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In this paper, a new scheme based on finite difference method is presented for 
solving nonlinear one-dimensional Burgers' equation. The effectiveness of the 
scheme is illustrated by solving two test problems with known exact solutions. 
High accuracy of the present scheme is achieved at different values of kinematic 
viscosity. The obtained numerical solutions are in excellent agreement with the 
exact solutions and the results are compared with the most popular known explicit 
methods for solving this equation. 
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1. Introduction 

In this work, we consider the one-dimensional 
time dependent Burgers’ equation in the form: 

 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑢𝑢 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜈𝜈 𝜕𝜕
2𝑢𝑢
𝜕𝜕𝑥𝑥2

 ,   (𝑥𝑥, 𝑡𝑡) ∈ Ω × [0,𝑇𝑇],(1) 
 

with the initial condition 
 

𝑢𝑢(𝑥𝑥, 0) = 𝑓𝑓(𝑥𝑥),   0 ≤ 𝑥𝑥 ≤ 1(2) 
 

andDirichlet boundary conditions 
 

𝑢𝑢(0, 𝑡𝑡) = 𝑢𝑢(1, 𝑡𝑡) = 0;    0 ≤ 𝑡𝑡 ≤ 𝑇𝑇, (3) 
 
whereΩ = (0,1) and 𝜈𝜈 > 0 is kinematic viscosity 
coefficient. the structure of Burgers' equation is 
similar to the Navier–Stokes equation due to the 
combination of convection, diffusion and a time 
dependent terms. The Burgers equation (1) is one of  

the very few nonlinear partial differential equations 
which can be solved exactly for restricted set of 
initial functions f(x) only. So, various numerical 
methods have been introduced by researchers for 
studying the properties of  it due to its wide range of 
applicability in respective fields of science and 
engineering. 
 

Burgers' equation was first introduced by 
Bateman [1] who studied its steady state solution. 
Later, describing a mathematical model of 
turbulence, it was proposed by Burgers and due to the 
extensive work of Burgers, therefore it is referred as 
‘‘Burgers’ equation’’. In a series of papers [2, 3], 
Burgers investigated various aspects of turbulence 
and also studied the statistical and spectral aspects of 
the equation and related systems of equations.  
Burgers' equations have been solved analytically in 
Hopf [4] and Cole [5] for a restricted set of arbitrary 
initial conditions. Burgers’ equation is studied by 
many researchers for many reasons: 
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• First, Its analytical solution was obtained by 
Cole [5] so it is easy to have the  numerical 
comparison.   

• Second, It contains the simplest form of 
nonlinear convection term and diffusionterm for 
simulating the physical phenomena of wave 
motion.   

• Third, Its shock wave behavior when 𝜈𝜈 is very 
small.  
 

Several numerical treatments of this equation have 
been presented bymany researchers.For instance, 
treatments based on the Finite difference method  in 
[6, 7, 8], Finite elements method in [9, 10], spectral 
least-squares method in [11, 12, 13], B-splines 
collocation method in [14, 15, 16], explicit and exact 
explicit finite difference methods in [17], variational 
iteration method in [18, 19], Adomian–Pade 
technique in [20], homotopy analysis method in [21, 
22], spectral collocation method in [23, 24], 
polynomial based differential quadrature method in 
[25], B-spline differential quadrature method in [26, 
27, 28], cubic Hermite collocation method in [29], 
hybrid numerical scheme based on Haar wavelets in 
[30], high order splitting method in [31],  Higher-
order accurate finite difference method in [32], etc. 
 

In this paper, the nonlinear term in Burger's 
equation is treated with a numerical formula that is 
proposed in KAY [33]. The technique based on finite 
difference method and is used to solve the one- 
dimensional burger's equation and compared with the 
most popular known explicit methods as Euler 
forward discretization (EF) and Mac Cormack 
discretization (MCOR). 
 
2. The Solution procedure 

 
The Burgers equation in (1) can be rewrittenas: 

 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −𝑢𝑢 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜈𝜈 𝜕𝜕2𝑢𝑢
𝜕𝜕𝑥𝑥2

 ,    𝑃𝑃1 ≤ 𝑥𝑥 ≤ 𝑃𝑃2, 𝑡𝑡 ∈ [0,𝑇𝑇],(4) 
 

with initial and boundary conditions as in (2), (3) 
respectively. First, Semi- discretization is obtained by 
using forward finite differencediscretization along t 
direction while x direction remains undiscretized. 
Then, the full- discretizationis obtainedby using 
central  finitedifferencediscretization along x 
direction. 
 
 
 

2.1 Semi- discretization 

 

Divide the interval [0, T] into N steps 0 = t0 ≤
t1 ≤ ⋯ ≤ tN = 𝑇𝑇, ∆𝑡𝑡 = 𝑇𝑇/N and𝑡𝑡𝑛𝑛 = 𝑛𝑛 ∗ ∆𝑡𝑡for 𝑛𝑛 =
1,2, … . . , N and defining the current time step as 
𝐾𝐾𝑛𝑛+1 = 𝑡𝑡𝑛𝑛+1 − 𝑡𝑡𝑛𝑛 and apply the forward finite 
differenceformula along t direction in equation (4), it 
becomes 

  
1

𝐾𝐾𝑛𝑛+1
𝑢𝑢𝑛𝑛+1 − 𝜈𝜈 𝑢𝑢𝑥𝑥𝑥𝑥𝑛𝑛+1 + 𝑢𝑢𝑛𝑛+1𝑢𝑢𝑥𝑥𝑛𝑛+1 = 1

𝐾𝐾𝑛𝑛+1
𝑢𝑢𝑛𝑛(5) 

 
 

From equation (5) the nonlinear term𝑢𝑢𝑛𝑛+1𝑢𝑢𝑥𝑥𝑛𝑛+1 is 

needed to compute at every time step. In this work 

the linearization of this term is done as in [33], such 

that𝑢𝑢𝑛𝑛+1𝑢𝑢𝑥𝑥𝑛𝑛+1 ≈ 𝑤𝑤𝑛𝑛+1𝑢𝑢𝑥𝑥𝑛𝑛+1, where𝑤𝑤n+1is computed 

by linear extrapolation using 𝑢𝑢𝑛𝑛and 𝑢𝑢𝑛𝑛−1as: 

 

𝑢𝑢n+1 ≅ 𝑤𝑤n+1 = �1 + �𝐾𝐾𝑛𝑛+1
𝐾𝐾𝑛𝑛

��𝑢𝑢𝑛𝑛 − �𝐾𝐾𝑛𝑛+1
𝐾𝐾𝑛𝑛

� 𝑢𝑢𝑛𝑛−1 (6) 

 
Substitution of (6) in (5) yields, 

 

1
𝐾𝐾𝑛𝑛+1

𝑢𝑢𝑛𝑛+1 − 𝜈𝜈 𝑢𝑢𝑥𝑥𝑥𝑥𝑛𝑛+1 + ��1 + �𝐾𝐾𝑛𝑛+1
𝐾𝐾𝑛𝑛

��𝑢𝑢𝑛𝑛 −

�𝐾𝐾𝑛𝑛+1
𝐾𝐾𝑛𝑛

�𝑢𝑢𝑛𝑛−1�𝑢𝑢𝑥𝑥𝑛𝑛+1 = 1
𝐾𝐾𝑛𝑛+1

𝑢𝑢𝑛𝑛(7) 

 

On discretizing along x direction, the Central Finite 
Difference discretization for the terms 𝑢𝑢𝑥𝑥𝑥𝑥𝑛𝑛+1and𝑢𝑢𝑥𝑥𝑛𝑛+1 
in equation (7) is used. 
 

2.2 Full- discretization 

 

Divide the interval [𝑃𝑃1, 𝑃𝑃2] into M steps 𝑃𝑃1 =
x0 ≤ x1 ≤ ⋯ ≤ xM = 𝑃𝑃2, with constant spacing step 
ℎ = (𝑃𝑃2 − 𝑃𝑃1)/M and 𝑥𝑥𝑖𝑖 = 𝑖𝑖ℎ for 𝑖𝑖 = 1,2, … . . , M, 
given 𝑢𝑢𝑛𝑛 at time level 𝑡𝑡𝑛𝑛 and compute 𝑢𝑢n+1 at 𝑡𝑡𝑛𝑛+1 
via 
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1
𝐾𝐾𝑛𝑛+1

𝑢𝑢𝑖𝑖𝑛𝑛+1 −
𝜈𝜈
ℎ2

[𝑢𝑢𝑖𝑖+1𝑛𝑛+1 − 2𝑢𝑢𝑖𝑖𝑛𝑛+1 + 𝑢𝑢𝑖𝑖−1𝑛𝑛+1] + 

1
2ℎ
��1 + �𝐾𝐾𝑛𝑛+1

𝐾𝐾𝑛𝑛
��𝑢𝑢𝑖𝑖𝑛𝑛 − �𝐾𝐾𝑛𝑛+1

𝐾𝐾𝑛𝑛
� 𝑢𝑢𝑖𝑖𝑛𝑛−1� [𝑢𝑢𝑖𝑖+1𝑛𝑛+1 − 𝑢𝑢𝑖𝑖−1𝑛𝑛+1] =

1
𝐾𝐾𝑛𝑛+1

𝑢𝑢𝑖𝑖𝑛𝑛(8) 
 

In this work, equal time step is used such that𝐾𝐾𝑛𝑛 =
𝐾𝐾𝑛𝑛+1 = Δ𝑡𝑡, so equation (8) will be written as: 
 
� 1
𝛥𝛥𝛥𝛥

+ 2𝜈𝜈
ℎ2
� 𝑢𝑢𝑖𝑖𝑛𝑛+1 + �− 𝜈𝜈

ℎ2
+ 1

2ℎ
(2𝑢𝑢𝑖𝑖𝑛𝑛 − 𝑢𝑢𝑖𝑖𝑛𝑛−1)� 𝑢𝑢𝑖𝑖+1𝑛𝑛+1 +

[− 𝜈𝜈
ℎ2
− 1

2ℎ
(2𝑢𝑢𝑖𝑖𝑛𝑛 − 𝑢𝑢𝑖𝑖𝑛𝑛−1)]𝑢𝑢𝑖𝑖−1𝑛𝑛+1 = [ 1

𝛥𝛥𝛥𝛥
]𝑢𝑢𝑖𝑖𝑛𝑛 (9)  

 
 
Multiplication of  equation (14) by Δ𝑡𝑡ℎ2 yields : 
 

[ℎ2 + 2𝜈𝜈𝜈𝜈𝜈𝜈]𝑢𝑢𝑖𝑖𝑛𝑛+1 + �−𝜈𝜈𝜈𝜈𝜈𝜈 +
1
2
𝛥𝛥𝛥𝛥ℎ(2𝑢𝑢𝑖𝑖𝑛𝑛 − 𝑢𝑢𝑖𝑖𝑛𝑛−1)� 𝑢𝑢𝑖𝑖+1𝑛𝑛+1 

 +[−𝜈𝜈𝜈𝜈𝜈𝜈 − 1
2
𝛥𝛥𝛥𝛥ℎ(2𝑢𝑢𝑖𝑖𝑛𝑛 − 𝑢𝑢𝑖𝑖𝑛𝑛−1)]𝑢𝑢𝑖𝑖−1𝑛𝑛+1 = ℎ2𝑢𝑢𝑖𝑖𝑛𝑛(10) 

 

Equation (10) can be written in a simple form as: 
 

𝛼𝛼𝑖𝑖𝑢𝑢𝑖𝑖𝑛𝑛+1 + 𝛽𝛽𝑖𝑖𝑢𝑢𝑖𝑖+1𝑛𝑛+1 + 𝛾𝛾𝑖𝑖𝑢𝑢𝑖𝑖−1𝑛𝑛+1 = 𝑓𝑓𝑖𝑖(11) 
where, 
 

𝛼𝛼𝑖𝑖 = ℎ2 + 2𝜈𝜈𝜈𝜈𝜈𝜈 

𝛽𝛽𝑖𝑖 = −𝜈𝜈𝜈𝜈𝜈𝜈 +
1
2
𝛥𝛥𝛥𝛥ℎ(2𝑢𝑢𝑖𝑖𝑛𝑛 − 𝑢𝑢𝑖𝑖𝑛𝑛−1) 

𝛾𝛾𝑖𝑖 = −𝜈𝜈𝜈𝜈𝜈𝜈 −
1
2
𝛥𝛥𝛥𝛥ℎ(2𝑢𝑢𝑖𝑖𝑛𝑛 − 𝑢𝑢𝑖𝑖𝑛𝑛−1) 

𝑓𝑓𝑖𝑖 = ℎ2𝑢𝑢𝑖𝑖𝑛𝑛 
 

Apply equation (11) at every point i, then solve the 
system of equations 𝐵𝐵𝐵𝐵 = 𝐹𝐹at every time step to find 
u of all point at every time step. 

 

3. The Numerical Results 
 
Burgers' equation in (1-3) is solved by the 

proposed method and the numerical results are 
compared with the exact solution and with other 
known explicit methods i.e., Euler forward 
discretization (EF) and Mac Cormack discretization 
(MCOR) at different nodal points and at different 
values of kinematic viscosity 𝜈𝜈. 

Since the exact solution is given, the L2- 
discretization error norm is computed after each time 
step by using the following definitions: 
 

𝐿𝐿2 ≔ �𝑢𝑢𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�2

= ��∑ �𝑢𝑢𝑗𝑗𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑢𝑢𝑗𝑗
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�

2
𝑛𝑛
𝑗𝑗=1 �

𝑁𝑁
 

 
The discretization error norms at the last time step are 
listed and compared with Euler forward (EF) and 
Mac Cormack discretization (MCOR). 
 
Example 1: 

 
Solve Burgers' equation in (1-3) with  
Initial condition:  
 

𝑢𝑢(𝑥𝑥, 0) = 𝑓𝑓(𝑥𝑥) =
2𝜈𝜈𝜈𝜈𝜈𝜈𝜈𝜈𝜈𝜈(𝜋𝜋𝜋𝜋)
𝑎𝑎 + 𝑐𝑐𝑐𝑐𝑐𝑐(𝜋𝜋𝜋𝜋) ,      𝑎𝑎 > 1 

 
 
whose exact solution is given by Wood [34]: 
 

𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝑓𝑓(𝑥𝑥) =
2𝜈𝜈𝜈𝜈𝑒𝑒−𝜈𝜈𝜋𝜋2𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠(𝜋𝜋𝜋𝜋)
𝑎𝑎 +  𝑒𝑒−𝜈𝜈𝜋𝜋2𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐(𝜋𝜋𝜋𝜋)

 

 
Numerical results obtained by the proposed method 
for  a= 1.1, h = 0.0125, T = 1, 𝜈𝜈 = 0.1 and time step 
Δ𝑡𝑡 = 0.01 are listed at different nodal points in Table 
(1). Table (2) reports the comparison of the proposed 
method with other known explicit methods, (EF) and 
(MCOR), to get L2- norm for  a = 1.1,h = 0.0125, T = 
1, 10 for 𝜈𝜈 = 0.01, 0.1,1. To investigate the stability 
of  proposedmethod, the  L2- error norms at the last 
time step are listed in Table (3) for different values of 
initial condition parameter:  𝑎𝑎 and viscosity 𝜈𝜈.These 
results show that the proposed method is stable for a 
wide range of 𝜈𝜈. As mention above, other known 
numerical methods converges only within limited 
range of 𝜈𝜈. 
 
Fig.1 showed the numerical solution obtained by the 
proposed method and exact solution for  a=1.1, h 
=0.0125 , T =1, Δ𝑡𝑡 = 0.001 and  𝜈𝜈 = 0.01.It is 
cleared that the numerical solution is almost identical 
to the exact solution. Fig. 2 showed the effect of 
increasing the coefficient a on the decreasing of L2- 
error norm for the values of 𝜈𝜈 = 1, 10.In Fig.3, L2- 
error norm is shown for a=1.1, h =0.0125,Δ𝑡𝑡 =0.001 
and T =1 for different value of 𝜈𝜈. It is cleared that L2- 
error norm decreased as 𝜈𝜈 increased. It is clearedfrom 
Fig.2 and Fig.3 that decreasing the value of 𝜈𝜈, needs 
more of the time iterations to reduce the error norm. 
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Table 1. Comparison of the proposed method with exact 
solution at different space points and the L2- error norm for 
a = 1.1, h = 0.0125, T = 1, 10 for 𝜈𝜈 = 0.1. 
  

x 

Proposed 

Method 

Exact 

Solution 

Proposed 

Method 

Exact 

Solution 

Δ𝑡𝑡= 0.001 Δ𝑡𝑡= 0.01 
0.1 0.049787 0.049754 9.6339 e-06 9.12930 e-06 

0.2 0.098285 0.098212 1.8325 e-05 1.73650 e-05 

0.3 0.143751 0.143627 2.5222 e-05 2.39011 e-05 

0.4 0.183471 0.183281 2.9651 e-05 2.80978 e-05 

0.5 0.213164 0.212890 3.1178 e-05 2.95442 e-05 

0.6 0.226510 0.226149 2.9652 e-05 2.80986 e-05 

0.7 0.215483 0.215063 2.5224 e-05 2.39024 e-05 

0.8 0.172786 0.172388 1.8326 e-05 1.73663 e-05 

0.9 0.097316 0.097065 9.6349 e-06 9.13007 e-06 

L2 2.5719 e-04  1.1549 e-06  

 
 

 
 
 

Fig.1. Numerical solution by proposed method and Exact 
solution for a =1.1, h =0.0125 ,T =1, Δ𝑡𝑡 = 0.001 and  𝜈𝜈 =
0.01 

 
 
 
 
 

 

 
 

(I) 
 

 
 

(II) 
 

Fig.2. L2- error norm for different values of Burger's 
coefficient a by using Proposed Method forh =0.0125, Δ𝑡𝑡 = 
0.001, T=1 for (I) 𝜈𝜈 = 1 and (II) 𝜈𝜈 = 10. 

 
 
 
 

41



EIJEST Vol. 26 (2018) 38–44 

  
Fig.3. L2 error norm by using proposed method for a=1.1, h 
=0.0125,Δ𝑡𝑡 =0.001 at T =1 for different value of 𝜈𝜈. 

 

Table 2. Comparison of the proposed method with other 
known explicit methods to get L2- error norm for a = 1.1, h 
= 0.0125, T = 1, 10 for 𝜈𝜈 = 0.001,0.01, 0.1. 
 
𝜈𝜈 Δ𝑡𝑡 EF 

[35] 
MCOR 

[36] 
Proposed 
Method 

0.0001 

0.001 3.4891 e-08 2.6251 e-08 3.4934 e-08 

 

0.01 2.6372 e-07 1.9502 e-07 2.6729 e-07 

0.001 

0.001 2.6372 e-06 1.9502 e-06 2.6729 e-06 

 

0.01 4.9467 e-06 1.0399 e-05 5.9641 e-06 

0.01 

0.001 4.9467 e-05 1.0399 e-04 5.9641 e-05 

 

0.01 Divergence Divergence 2.5719 e-05 

0.1 

0.001 Divergence Divergence 2.5719 e-04 

 

0.01 Divergence Divergence 1.1549 e-06 

 
 
Table 3. L2- error norm at h = 0.0125, Δ𝑡𝑡 = 0.001, T = 1 for 
different value of 𝜈𝜈 and a.   
A 𝜈𝜈 = 0.1 𝜈𝜈 = 1 𝜈𝜈 = 10 𝜈𝜈 = 100 
1.1 2.5719e-04 1.1549e-05 4.4842e-14 4.4842e-13 

2 6.8753e-05 5.9438e-06 4.4842e-15 4.4842e-14 

4 2.7418e-05 2.9305e-06 1.4947e-15 1.4947e-14 

 
 

Example 2: 
 
Solve Burgers' equation in (1-3) with  
Initial condition: 
 

𝑢𝑢(𝑥𝑥, 0) = 𝑓𝑓(𝑥𝑥) = 𝑠𝑠𝑠𝑠𝑠𝑠(𝜋𝜋𝜋𝜋) 
 
whose exact solution is given by [5]: 
 

𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝑓𝑓(𝑥𝑥)

= 2𝜈𝜈𝜈𝜈
∑ 𝑐𝑐𝑛𝑛∞
𝑛𝑛=1 exp(−𝑛𝑛2𝜋𝜋2𝜈𝜈𝜈𝜈)  𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑛𝑛𝑛𝑛𝑛𝑛)

𝑐𝑐0  +  ∑ 𝑐𝑐𝑛𝑛∞
𝑛𝑛=1 exp(−𝑛𝑛2𝜋𝜋2𝜈𝜈𝜈𝜈)𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛𝑛𝑛𝑛𝑛) 

 
where the Fourier coefficients are: 
 

𝑐𝑐0 = � exp �−
1

2𝜈𝜈𝜈𝜈
[1 − 𝑐𝑐𝑐𝑐𝑐𝑐(𝜋𝜋𝜋𝜋)]� 𝑑𝑑𝑑𝑑

1

0
 

 

𝑐𝑐𝑛𝑛 = 2� exp �−
1

2𝜈𝜈𝜈𝜈
[1 − 𝑐𝑐𝑐𝑐𝑐𝑐(𝜋𝜋𝜋𝜋)]� 𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛𝑛𝑛𝑛𝑛)𝑑𝑑𝑑𝑑

1

0
 

 
Numerical results obtained by the proposed method 
for  h = 0.0125 and 0.01, T = 0.5, 𝜈𝜈 = 1 and time step 
Δ𝑡𝑡 = 0.001 are listed at different nodal points in 
Table (4). In Table (5) the comparison of the 
proposed method with exact solution at different time 
for h = 0.01, 𝜈𝜈 = 0.1 and time steps  
Δ𝑡𝑡 =0.01, 0.001 are tabulated. To investigate the 
stability of the Proposed Method, the  L2- error norms 
at the last time step are listed in Table (6) for 
different values of initial condition parameter 
viscosity 𝜈𝜈.These results show that the proposed 
method is stable for a wide range of 𝜈𝜈. 
 

  
Fig.4. L2- error norm for different values of 𝜈𝜈 by using 
Proposed Method for h = 0.01, Δ𝑡𝑡 = 0.001, T = 2.5. 
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Table 4.Comparison of the proposed method with exact 
solution at different space points and the L2- error norm for 
h = 0.0125 and 0.01, T = 0.5, 𝜈𝜈 = 1 and time step Δ𝑡𝑡 = 
0.001, 0.0001.  

X 

 Proposed Method                     Exact  
Solution    
Δ𝑡𝑡 = 0.001   Δ𝑡𝑡 = 0.0001 

 M= 80      M=100 M= 80     M=100 
0.1 0.00227 0.00227 0.00222 0.00222 0.00221 

0.2 0.00432 0.00432 0.00422 0.00422 0.00421 

0.3 0.00594 0.00594 0.00581 0.00581 0.00580 

0.4 0.00699 0.00699 0.00684 0.00684 0.00682 

0.5 0.00735 0.00735 0.00719 0.00719 0.00717 

0.6 0.00699 0.00699 0.00684 0.00684 0.00682 

0.7 0.00595 0.00595 0.00582 0.00582 0.00580 

0.8 0.00432 0.00432 0.00423 0.00423 0.00422 

0.9 0.00227 0.00227 0.00223 0.00222 0.00222 

L2 1.272e-4 1.260e-4 1.562e-5 1.445e-5  

 
Table 5.Comparison of the proposed method with exact 
solution at different time for h = 0.01,𝜈𝜈 = 0.1 and time 
steps Δ𝑡𝑡 = 0.01, 0.001 
 

X T 
Proposed Method 

Δ𝑡𝑡 = 0.01   Δ𝑡𝑡 = 0.001 
Exact 
Solution 

0.25 

2.5 0.044038 0.043459 0.043381 

3.0 0.027693 0.027261 0.027202 

3.5 0.017243 0.016932 0.016890 

0.5 

2.5 0.066948 0.065988 0.065857 

3.0 0.040973 0.040296 0.040205 

3.5 0.025076 0.024608 0.024545 

0.75 

2.5 0.051179 0.050374 0.050263 

3.0 0.030375 0.029844 0.029772 

3.5 0.018248 0.017896 0.017848 

 
Table 6. L2- error norm at h = 0.01, Δ𝑡𝑡 = 0.001 for different 
value of 𝜈𝜈and T  

𝜈𝜈 T = 1 T = 2.5 T = 3.0 
1 1.8365 e-06 1.7740 e-12 1.5505 e-14 

0.1 2.6350 e-04 9.4185 e-05 6.5146 e-05 

0.04 4.8017 e-04 1.9112 e-04 1.4670 e-04 

 
 

In Fig. 4, L2- error norm for different values of 𝜈𝜈 by 
using Proposed Method for h = 0.01, Δ𝑡𝑡 = 0.001, T = 
2.5 are shown.As shown in Fig. 4,𝜈𝜈=1 is needed 2500 
time iterations to achieve the obtained error norm 
butdecreasing𝜈𝜈 doesn't achieve the same rate 
ofreducing the error norm. This phenomena takes 
place in case of small viscosity due to appear of a 
thin layer close to the wall that is known as the 
boundary layer which is needed to increase grid 
points into the boundary layer region than the rest of 
the domain to obtain oscillation-free solutions. Also, 
small time increment is chosen to ensure high 
accuracy.  
 
4. Conclusions 

 
In this work the new scheme based on finite 
difference method was proposed to obtain the 
numerical solution of the 1D-Burgers' equation. The 
nonlinear term in Burgers' equationlinearized without 
any transformation formula. The proposed scheme 
provides accurate solutions of the two test problems, 
be stable and converge even for low viscosity and 
long time. Moreover, the proposed scheme is simple 
and can be to implement easily. 
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