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Understanding program behavior is at the foundation of computer architecture and 
program optimization. Programs pass through different behaviors where their 
performance characteristics and hardware resource requirements vary. Program 
phase detection and classification research aiming to understand the program time-
varying behavior, can unlock a lot of phase-based optimizations which are specially 
tailored to improve the performance of each individual program phase. In this paper, 
we introduce an efficient run-time phase detection and classification technique, based 
on tracking changes in the L2 cache access pattern of different portions in the 
program execution. The proposed technique monitors a running program and keeps 
track what phase the running program is currently executing, with no need to 
recompile the tracked program, and with execution time overhead of 4%, on average. 
Performance Monitoring Unit (PMU) is exploited to sample the memory addresses 
causing L1 data cache misses. This profiling data is used to construct the Cache 
Access Signature Vectors (CASVs) that accurately reflect the L2 cache access 
patterns for each interval of execution. By comparing CASVs, the proposed 
technique classifies the program into a set of stable phases with high degree of intra-
phase homogeneity. Our evaluation shows that phase changes detected by our 
technique have strong correlation with the variation in Instruction Per Cycle (IPC). 
Furthermore, our technique can contribute in reducing L2 cache miss rates, and 
optimizing L2 cache utilization, through its direct capability of estimating per-phase 
L2 cache demand.  
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1. Introduction 

Understanding the program behavior is at the 
foundation of computer architecture and program 
optimization. Many programs have different behavior 
over the program’s complete execution time. The way 
a program’s execution changes over time falls into 
repetitive portions called phases.  

 

* Corresponding author. Tel.: +2-050-695-1082. 
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Understanding the time-varying behavior of 

programs, can unlock a lot of optimization 
opportunities; and tend to improve not only the 
programs' average performance but also the 
performance of individual phases of the program 
execution. 
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Examining the run-time behavior of programs was 
an interest of a lot of researchers [1],[2],[3]. They 
divided the program’s execution into non-overlapping 
intervals. An interval is a contiguous part of execution 
(fixed number of instructions) of a program. The 
program phase could be defined as a set of intervals 
within a program’s execution that have homogeneous 
behavior, including the cache miss, Instruction–Per-
Cycle (IPC) and power consumption, and similar 
resource requirements, regardless of temporal 
adjacency. A phase can reoccur multiple times through 
the program’s execution. The program phase 
classification could be defined as partitioning the 
program into groups of intervals with similar behavior, 
using a certain similarity metric and similarity 
threshold.  

Recent researches classify and predict phases in 
program execution using varieties of techniques. The 
approach of Sherwood [4] focuses on identifying 
phase behavior by tracking executed code. In another 
approach of Dhodapkar and Smith [5], phase behavior 
can be detected by examining a program’s working set. 
And other techniques like those make use of 
conditional branch counts [6], data reuse distance [7].  

Program Phase identification and detection can be 
exploited to save energy by dynamically reconfiguring 
caches [5],[6],[8], to guide compiler optimization 
[9],[10], to assign processes to cores in a 
heterogeneous multi-core architecture [11], and to 
reduce the power consumption in mobile processors 
[12]. All of these techniques take advantage of 
program phase behavior. 

In this paper, we proposed a run-time technique to 
detect and identify the stable program phases, and use 
that to calculate the L2 cache demand for each 
program phase, in order to optimize L2 cache 
utilization. The proposed technique is called "Cache 
Set Signature". In which, the main idea behind the  
Basic Block Vector (BBV) [4] and the Working Set 
Signature [5] methods are combined to increase the 
program phase detection accuracy and exploit the 
advantages of them both. 

The rest of the paper is laid out as follows. In 
Section 2, prior work related to phase-based program 
behavior is discussed. Section 3 describes our program 
phase detection technique.  Experimental setup and 
experimental results can be found in Section 4. Finally, 
section 5 concludes the paper. 

 

2. Related work 

This section presents an overview of the previously 
proposed techniques for detecting program phase 
changes. 

Peter Denning [13] defined “the working set of 
information  ࢃሺ࢚, ࣎ሻ of a process at time  ࢚  to be the 
collection of information referenced by the process 
during the process time interval	ሺ࢚ െ ࣎, ࢚ሻ”. Typically 
the units of information are considered to be memory 
regions of fixed size, such as pages.  

Dhodapkar and Smith [5] defined a phase as the 
maximum interval over which the working set remains 
more or less constant. A working set signature is 
designed to work as the compact representation for a 
complete working set of the program intervals. 

Unlike early working set researchers who were 
interested in program paging behavior, Dhodapkar and 
Smith [5] chose the working set elements to be of 
cache line granularity, because it is suitable for dealing 
with multi-configuration units (e.g. caches and 
predictors) that work at the same granularity.  The non-
overlapping windows (intervals) are used instead of 
sliding window which was used in paging studies. 

The method to form a working set signature is 
shown in Figure 1. The working set signature consists 
of an n-bit vector, where each entry of that vector 
corresponds to a certain memory block. The vector is 
cleaned at the beginning of each interval. b: is the least 
significant bits of the program counter , where 2b is the 
number of instructions contained  in the cache line.  
m bits are selected from the program counter, and are 
used to address 1 bit in the n-bit signature via a 
pseudo-random hash function. A bit in the working set 
signature vector is set when the corresponding 
instruction block is touched. 

Fig. 1: Mechanism for collecting the working 
 set signature vector [5] 
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A metric called relative signature distance is 
used to detect the working set change. Given 
two working set signatures to compare S1, and 
S2, the total number of ones in the exclusive OR 
(XOR) of the signatures is divided by the total 
number of ones in the inclusive OR (OR) of the 
signatures to obtain a ratio called a relative 
signature distance. Where num_of_”1”bit_in() 
represents the function that counts the number 
of “1” bits in the bit vector [5]. 

If the working set signatures are very similar, the 
relative signature distance δ is close to zero. 
Consequently, the two intervals are classified into the 
same program phase.  If the working set signatures are 
very different, the relative signature distance δ is close 
to one. Hence, the two intervals are classified into 
different program phases. The threshold value is 
obtained experimentally by comparison with several 
benchmarks. 

Dhodapkar and Smith [5] estimated the working set 
size by counting the number of non-zero bits in the 
signature. Their technique directly configures, i.e., 
without a trial and error process, certain hardware 
whose performance depends on the working set size, 
including caches and branch predictors . The optimal 
configurations along with their corressponding 
working sets signatures could be stored. When  
a working set repeats itself during program execution, 
the optimal configuration could be directly set. 

Sherwood [2],[4],[14] developed the Basic Block 
Vectors (BBVs) technique in order to capture 
information about the way the program changes its 
behavior over time. A basic block is defined as a 
section of code that is executed from start to finish 
with one entry and one exit.  

A Basic Block Vector (BBV) is a single 
dimensional array with one element in the array for 
each basic block in the program. Each element in the 
array is the number of times the corresponding basic 
block has been touched during an interval of 
execution, multiplied by the number of instructions in 
that basic block [15].  

In the BBV technique proposed by Sherwood, 
determination of program behavior is only a function 
of what the code is doing at a particular time and how 
often, and is independent on any hardware statistics or 
any architecture parameters.  

The method to form the Basic Block Vector is 
shown in Figure 2. Accumulator buckets are the 
elements of the Basic Block Vector . Sherwood found 
that 32 bucket (32 basic blocks) is sufficient to 
distinguish between different phases, even for more 
complex programs. So every branch PC is hashed to 
one of 32 accumulator buckets (entry). Each 
accumulator bucket is a large saturating counter that 
gets increased by the number of instructions from the 
last branch to the current branch being processed. 
Updating the accumulator is performed once for every 
branch executed.  

Fig. 2: Mechanism for collecting the Basic  
Block Vector [14] 

At the end of each interval composed of 10 million 
instructions [14], a BBV corresponds to that interval is 
produced, and the classification stage begins. The Past 
Footprints table keeps only single BBV for each 
unique phase ID, as a representative of that phase. The 
tabled is looked up for a match with each currently 
produced BBV. If there is a match, the current 
interval's vector is classified into the same phase as the 
past footprint vector, and is not inserted into the past 
footprint table. If there is no match, then a new phase 
is detected, and hence a new unique phase ID will be 
created.  

Manhattan distance is used in BBVs comparison 
[4]. The Manhattan distance is the distance between 
two points if the paths can only be taken in parallel to 
the axes. Such distance is computed by summing the 
absolute value of the element-wise subtraction of two 
vectors.  

For any two D-dimensional vectors a and b, the 
distance can be computed as: 

 
 
 
 

D 

i=1 
ManhattanDist( a, b) = ∑   |ai – bi |              (2) 
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A phase change is detected and a new phase ID is 
generated, when the Manhattan distance between 
consecutive BBVs exceeds a preset threshold. 

Dhodapkar and Smith [5] used a bit vector to track 
the working set of the code (the code blocks which are 
touched), during a particular interval. Whereas in 
Sherwood [15] technique the proportion of time spent 
executing in each code block is tracked. This is an 
important distinction. Because in complex programs, 
there are many instruction blocks that execute only 
intermittently. When tracking the pure working set, 
these infrequently executed blocks can disguise the 
frequently executed blocks that dominate the behavior 
of the application. In other words, by tracking the 
frequency of code execution it is possible to 
distinguish important instructions (basic blocks) from 
a sea of infrequently executed ones [14]. 

Dhodapkar and Smith [16] conducted a 
comparative study among techniques used in detecting 
program phase changes. They concluded that BBV 
techniques performs better than the other techniques, 
providing higher sensitivity and more stable phases. 
However, the instruction working set technique yields 
30% longer phases than the BBV method, although 
there is less stability within phases.  

3. The Cache Access Signature technique 

In this paper, we propose a technique to: (1) detect 
and identify the stable program phases, (2) estimate 
and tabulate the L2 cache demand for each program 
phase. It's a run-time technique with acceptable and 
minimal execution time overhead and memory cost.  

Program phase detection based on working set 
signatures method has a direct capability to estimate 
the program phase cache demand (using working set 
size). On the other side, program phase detection based 
on BBVs method contains more information compared 
to working set signatures one, and produces more 
sensitive and efficient phase classification.  

The proposed program phase detection technique 
combines the two methods, to exploit the advantages 
of them both, to increase the program phase detection 
accuracy, and to estimate the L2 cache demand for 
each phase. 

3.1. Investigating the relation between program 
phase changes and L2 cache demand 

The program cache demand varies according to 
different phases during the program execution time. 

David Tam [17] used the changes in the L2 cache miss 
rate as an indicator of phase transitions. Because it 
directly reflects the changes in the application’s cache 
usage.  

Figure 3 shows the impact of phase changes on the 
miss rates of mcf (one of SPEC 2000 Benchmarks) as 
an example. The measurements are taken by running 
the application 16 times, each time with a different L2 
cache size, and using the Performance Monitoring 
Unit (PMU) to measure the cache miss rate. The x-axis 
shows the execution progress of mcf in terms of the 
number of completed instructions. The y-axis 
indicates the L2 cache miss rate in terms of the number 
of misses per thousand completed instructions 
(MPKI).  Thus, the graph shows how the L2 cache 
miss rate varies during program execution.   
mcf oscillates between two phases repeatedly, a phase 
with relatively high L2 cache miss rates and a phase 
with relatively low L2 cache miss rates [17]. 

Fig. 3: Miss rate curves at different L2 cache sizes 
reflect the program behavior [17] 

This graph also indicates how the L2 cache miss 
rate diminishes as the size of the L2 cache partitions is 
increased. For example, the time-varying miss rate of 
the size 16 configuration is always lower than the time-
varying miss rate of the size 15 configuration, which 
is always lower than the time-varying miss rate of the 
size 14 configuration, etc. So if we have the ability to 
estimate the L2 cache size required by each program 
phase and allocate the required size to the 
corresponding phase, there will be a great potential to 
minimize L2 cache misses. 

From David Tam studies [17], we can conclude that 
tracking L2 miss rates is sufficient to partition the 
program into phases. Consequently, we suppose that 
tracking L2 cache accesses is also sufficient to detect 
and classify the program into different phases. 
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In the proposed technique, the pattern or the way by 
which the program uses the L2 cache is tracked.  
In other words, the addresses causing L1 data cache 
misses, which consequently lead to L2 cache accesses, 
are captured. Then those  captured addresses are used 
to construct a vector called Cache Access Signature 
Vector (CASV). Costructed CASVs reflect the pattern 
of L2 cache usage of each phase. 

3.2. Using Performance Monitoring Unit for tracing 
and sampling memory addresses 

Most modern microprocessors have Performance 
Monitoring Units (PMUs) with integrated Hardware 
Performance Counters (HPCs) that can be used to 
monitor and analyze performance in real time.  

HPCs allow for counting microarchitectural events, 
such as branch mispredictions and cache misses. They 
can be programmed to interrupt the processor when a 
specified number of a certain event occurs. Moreover, 
PMUs make various registers available for  
inspection, such as the memory addresses causing 
cache misses [18]. 

On Intel x86 processors, it may be possible to use 
the Intel Precise Event-Based Sampling (PEBS) 
feature of the PMU to capture the required information 
[18].  Data Linear Address (DLA) is one of PMU new 
features and PEBS improvements in Haswell 
architecture. DLA enables capturing of the data linear 
address and data source of load/store memory 
instructions, at which certain precise memory access 
events, such as a data cache miss or a TLB miss, occur. 

The proposed technique tracks the L2 cache access 
patterns to detect and classify different program 
phases. To monitor these patterns, we choose 
“MEM_LOAD_UOPS_RETIRED.L1_MISS”, one of 
the precise memory access events, which is supported 
by both PEBS and DLA facilities [18], [19]. Each time 
the number of L1 data cache misses reaches a specific 
threshold (sampling period), the respective HPC 
overflows. Then, PEBS mechanism causes a sample to 
be captured including the linear data address at which 
L1 data cache miss occurred.  

Perf_events tool, a user-space tool under Linux 
kernel, is used to manage HPCs, to capture the 
memory addresses causing L1 data cache misses, and 
to extract other information from the PMU. 
Perf_events tool is extremely useful as it barely adds 
any overhead [20]. 

 

Fig. 4: The run-time Cache Access Signature 
technique for phase detection and classification 

3.3. Constructing Cache Access Signature Vector 

Figure 4 describes the Cache Access Signature 
Vector. CASV is a single dimensional array consisting 
of N elements. There is a single element corresponds 
to each set in the  L2 set-associative cache. Therefore, 
N equals the number of L2 cache sets. 

The program execution is divided into fixed-size 
intervals, with fixed number of instructions I in each. 
A single CASV is constructed for each interval. 

Memory addresses, at which L1 data cache misses 
occurred, are tracked by using PEBS and DLA features 
of the PMU. Then a hash function determines the L2 
cache set referenced by each address, and then 
increments the vector element corresponding to the 
referenced L2 cache set.  

Each vector element is an M bits saturating counter 
that represents number of times the corresponding L2 
cache set is referenced during an interval of execution. 

At the end of each interval, the CASV is 
constructed. Such vector reflects the pattern of L2 
cache usage, including not only which L2 cache sets 
are referenced during the interval, but also the access 
intensity of each set. The intervals that share patterns 
or have similar signatures are classified into the same 
program phase. 

3.4. Signature History Table and phase classification 

For phase classification, a table is maintained to 
hold the information related to the unique phases, 
previously encountered during the program execution. 
This table is called the Signature History Table.  

Samples of 
MemoryAddresses  

causing L1 data 
cache misses 
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In which, a single CASV is kept for each phase, along 
with a unique phase ID for that signature. Each CASV 
stored in the signature history table serves as a 
representative of its corresponding phase. The L2 
cache demand for each phase is also tabulated. 

3.4.1. The Similarity Metric 
We define the similarity of two CASVs S1 and S2, 

corresponding to two intervals, as their dot product: 
 

Where Sx is the CASV of the interval x, and i is the 
ith entry of the vector consisting of N entries. There are 
two reasons behind choosing this metric for similarity. 
First, it automatically takes into account only those 
entries where both vectors have non-zero values. Note 
that S1 and S2 have non-zero values in the same entry, 
only if the same L2 cache set is referenced during their 
corresponding intervals. Second, the metric takes into 
account the intensity by multiplying together the 
number of times the target L2 cache set is referenced 
during both of the compared intervals.  

Larger dot product indicates more similarity 
between the compared intervals. On the other hand, 
totally dissimilar intervals should result in zero values 
for their dot product. The value of the similarity 
threshold is experimentally set, so as to distinguish 
accurately among phases and produce more 
homogenous ones.  

3.4.2. Classifying the Cache Line Signatures to a 
Phase ID 

In the classification process, we compare the 
current interval signature to a set of representative 
signature vectors stored in the Signature History Table 
illustrated in figure 4.  If there is a match, we classify 
the current interval of execution into the same phase as 
the phase of the matched representative vector, and the 
current vector replaces the matched table entry. If there 
is no match, then a new phase is detected, and hence a 
new unique phase ID is created and inserted to the 
Signature History Table along with its representative 
signature vector.  

3.4.3. First similar or best similar 
In order to improve the homogeneity of our phase 

classifications, when multiple signatures satisfy the 
similarity threshold, we choose the most similar 
representative signature, not the first similar one. In 
other words, we choose the phase ID whose 
representative signature is most similar to the CASV 
of the current interval. 

3.4.4. Stable and transition phases 
An important aspect of phase classification is how 

to handle phase transitions. During the program 
execution, the program behavior passes through some 
stable long phases and other intervals of transition or 
unstable phases in between the stable ones. These 
transitional intervals do not last for very long, and 
infrequently occur, so it is not worthwhile to optimize 
for their behavior. 

We group all transitional intervals into a single 
phase called Phase Zero. In order to reduce the number 
of unique phase IDs generated. 

Each entry in the Signature History Table is 
augmented with a small counter called Interval 
Counter that counts the number of intervals which are 
classified into each phase. If the current signature has 
no match, a new signature is added to the Signature 
History Table, its Interval Counter is set to zero, and 
phase ID zero is assigned to that signature. The 
Interval Counter is increased every time another 
interval is classified into the corresponding phase. 
Phase Zero has only a real phase ID, when the Interval 
Counter value exceeds a certain threshold. To achieve 
more accurate phase classification, number of 
intervals which change the phase from transition phase 
to a stable one (Transition Threshold), is a subject of 
experimental results. 

3.5. Estimation for per phase L2 cache demand 

In the Signature History Table, representative 
signatures reflect the pattern of L2 cache usage of each 
phase, so the technique introduces a direct method to 
estimate the L2 cache demand for a certain program 
phase including all of its intervals that have high 
degree of L2 cache usage pattern similarity. 

L2 cache demand or number of cache sets required 
by any program phase is equal to the number of non-
zero elements in the corresponding representative 
CASV. Allocating L2 cache size per phase basis is 
beyond the scope of this paper, and it is a point of 
future research.  

4. Experimental Results 

4.1. Experimental Setup 

Our experiments and analysis are performed on 
Intel Core i7 machine running Linux kernel (version 
4.2.0-21-generic).  The hardware specifications are 
described in Table 1.  

N-1 

i=0 
Similarity (S1 , S2 ) = ∑   S1 [i] × S2 [i]     (3) 
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Table  1. Intel Core i7 specifications 

Item Specification 

# of Chips 1 

# of Cores 2 per chip 

CPU Core Inter Core i7 – 4510U, 2.6GHz, 2-way SMT 

L1 ICache 2 × 32 KB, 8-way set associative, 64 bytes line size 

L1 DCache 2 × 32 KB, 8-way set associative, 64 bytes line size 

L2 Cache 2 × 256 KB, 8-way set associative, 64 bytes line size 

L3 Cache 4 MB, 16-way set associative, 64 bytes line size 

RAM 8GB 

A simple benchmark is developed to test the 
proposed technique on. The testing program exhibits 
different behaviors, i.e. some small portions are CPU-
bound code, and other portions, which dominate most 
of the program execution, walk through memory using 
different fashions. The variance introduced through 
the testing program aims to: first, access different 
memory locations. Second, generate different miss 
rates on the level of L1 data cache. 

4.2. Demonistrating the Correlation between IPC 
variation and the changes in L2 cache access pattern 

As Figure 5 shows, the IPC variation in the program 
(the upper graph) has a strong correlation with the 
phase changes detected by the proposed technique (the 
lower graph). Consequently, our technique is able to 
not only detect phases that reflect the program 
behavior but also track the boundaries of behavior 
changes.  

Fig. 5: Correlation between changes in the IPC and 
phase changes detected by the proposed technique 

4.3. The intra-phase homogeneity evaluation 

Homogeneous phase means that architectural 
metrics such as IPC, should have quite similar values 
at all the intervals that the phase occurs in. To quantify 
the extent to which the proposed technique achieves 
this goal, the homogeneity of IPC on a per-phase basis 
is measured for the phases detected at run-time. 

IPC is calculated for each interval of execution. 
Then, average IPC is calculated for each phase, i.e. for 
all intervals which are classified into that phase. The 
standard deviation in IPC values, in addition to their 
average, are shown in Table 2. 

When we compare the standard deviation of Phase 
4 or Phase 5, the longest phases detected by our 
technique, with that of the entire program (denoted by 
“Full”), we can see that after dividing the program into 
phases, each phase has a little variation within itself.  

The entire testing program has IPC CoV (standard 
deviation / average) of 17.2%. By dividing it up into 
different phases, we achieved overall IPC CoV of 
5.6%. Therefore, our technique demonstrates its 
ability to detect phases with high intra-phase 
homogeneity. 

Table  2. Examination of the per-phase homogeneity 

Phase ID Full Phase 4 Phase 5 

Percentage of Execution 100% 40.25% 38.69% 

IPC (Average) 1.978 1.915 1.734 

IPC (Standard Deviation) 0.34 0.105 0.153 

CoV of IPC (%) (Standard Deviation / Average) 17.189% 5.48% 8.824% 

4.4. Impact of the similarity threshold 

The similarity threshold determines how much two 
intervals can deviate from each other without being 
classified into separate phases. Changes in the 
similarity threshold will affect the number of 
generated phase IDs, and the intra-phase homogeneity.  

Figures 6 and 7 respectively show the number of 
detected phases and the IPC CoV values at different 
similarity thresholds. The number of detected phases 
increases as we increase the similarity threshold. At 
similarity threshold of zero, 17.2% is the highest value 
for the overall CoV calculated when treating the whole 
program as a single big phase. Then, the overall CoV 
decreases indicating that we can produce more 
homogeneous phases by using higher similarity 
thresholds. By fine tuning, the suitable similarity 
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threshold value is picked up, which produces few 
phases with low overall CoV. 

4.5. Impact of the transition threshold 

As previously explained in section 3.4.4, it is 
important to identify the infrequently occurring 
behaviors and isolate their transitional intervals into a 
single transition phase which we called Phase Zero. A 
new phase ID is only generated, if the number of times 
in which a representative signature appears, exceeds a 
preset Transition Threshold. Otherwise Phase Zero is 
generated. 

Fig. 6: Number of detected phases at  
different similarity thresholds 

Fig. 7: The overall CoV in IPC changes according 
 to different similarity thresholds 

Fig. 8: The impact of applying Transition Phase 
utility on the number of detected phases 

As illustrated in Figure 8, the number of detected 
phases is inversely proportional to the value of the 
transition threshold. “W/O Trans” means that the 
phases are detected without applying the utility of the 
transition phase, i.e. once a new signature appears, a 
new phase ID is generated. “Trans 2” means that the 
representative signature must appear twice before it is 
considered stable, and a new phase ID is assigned to it. 
After applying the transition phase utility, the number 
of detected phases is significantly reduced. We can see 
that tens of phase IDs are generated instead of 
hundreds. 

5. Conclusion 

This thesis introduced an efficient run-time phase 
detection and classification technique, that is based on 
tracking changes in the L2 cache access pattern of 
different portions in the program execution. Our 
evaluation shows that the average execution time 
overhead was about 4%. 

We examined how the Performance Monitoring 
Unit (PMU) and its related tools could be used to 
sample the memory addresses causing L1 data cache 
misses. This data collected through lightweight 
hardware monitoring, is used to construct the Cache 
Access Signature Vectors (CASVs) which accurately 
reflect the L2 cache access patterns for each interval of 
execution. By comparing CASVs on-the-fly, our 
technique accurately classifies the program execution 
intervals into phases. We show that the variation in, an 
important architectural metric, IPC has a strong 
correlation with the phase changes detected by our 
technique. 

The proposed technique demonstrates its ability to 
detect phases with high intra-phase homogeneity. 
Hence, any optimization adapted and applied to a 
single segment of execution from one phase, will 
potentially apply well to the other parts of that phase. 
Furthermore, our technique is able to capture long 
stable phases, that is the major beneficiary of run-time 
optimizations. Grouping transitional intervals into 
“Phase Zero”, improves the detection accuracy by 
significantly reducing the number of detected phases 

We show that picking the suitable similarity 
threshold should balance the trade-off between 
homogeneity (IPC CoV), and number of detected 
phases. 

The direct capability of the proposed technique to 
estimate and tabulate L2 cache demand for each phase, 
is considered as an advantage, and makes the 
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technique to be distinctive. This is mainly because per-
phase tabulated L2 cache demand estimation, could be 
exploited for reducing L2 cache miss rates, and 
optimizing L2 cache utilization.   

For future research, the technique will be tested on 
SPEC CPU Benchmarks, and comparing its findings 
with other techniques tested on the same benchmarks. 
We intend  to extend our technique to be able to predict 
the phase ID of the next interval of execution, and to 
use the per-phase tabulated L2 cache demand to 
optimize for the reoccurring phases. 
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