

The Egyptian International Journal of
Engineering Sciences and Technology

Vol. 20 (July 2016) 1–9

http://www.eijest.zu.edu.eg

A Run-Time Program Phase Detection Technique

for Optimizing Per-Phase L2 Cache Demand

Ibrahim E. Ziedan, Hazem I. Shehata and Shaymaa M. Seraga*

Computers and Systems Department, Zagazig University, Zagazig 44519, Egypt.

A R T I C L E I N F O A B S T R A C T

Article history:
Received: 31 March 2016
Received in revised form: 25
May 2016
Accepted: 1 June 2016
Available online: 13 July
2016

Understanding program behavior is at the foundation of computer architecture and
program optimization. Programs pass through different behaviors where their
performance characteristics and hardware resource requirements vary. Program
phase detection and classification research aiming to understand the program time-
varying behavior, can unlock a lot of phase-based optimizations which are specially
tailored to improve the performance of each individual program phase. In this paper,
we introduce an efficient run-time phase detection and classification technique, based
on tracking changes in the L2 cache access pattern of different portions in the
program execution. The proposed technique monitors a running program and keeps
track what phase the running program is currently executing, with no need to
recompile the tracked program, and with execution time overhead of 4%, on average.
Performance Monitoring Unit (PMU) is exploited to sample the memory addresses
causing L1 data cache misses. This profiling data is used to construct the Cache
Access Signature Vectors (CASVs) that accurately reflect the L2 cache access
patterns for each interval of execution. By comparing CASVs, the proposed
technique classifies the program into a set of stable phases with high degree of intra-
phase homogeneity. Our evaluation shows that phase changes detected by our
technique have strong correlation with the variation in Instruction Per Cycle (IPC).
Furthermore, our technique can contribute in reducing L2 cache miss rates, and
optimizing L2 cache utilization, through its direct capability of estimating per-phase
L2 cache demand.

Keywords:
Program Phase Detection
Basic Block Vectors
Working Set Signatures
Phase-based Optimization
Cache Access Pattern
Performance Monitoring Unit

1. Introduction

Understanding the program behavior is at the
foundation of computer architecture and program
optimization. Many programs have different behavior
over the program’s complete execution time. The way
a program’s execution changes over time falls into
repetitive portions called phases.

* Corresponding author. Tel.: +2-050-695-1082.
E-mail address: shserag@zu.edu.eg

Understanding the time-varying behavior of

programs, can unlock a lot of optimization
opportunities; and tend to improve not only the
programs' average performance but also the
performance of individual phases of the program
execution.

1

 Ibrahim E. Ziedan et. al./ A Run-Time Program Phase Detection Technique For Optimizing Per-Phase L2 Cache Demand

Examining the run-time behavior of programs was
an interest of a lot of researchers [1],[2],[3]. They
divided the program’s execution into non-overlapping
intervals. An interval is a contiguous part of execution
(fixed number of instructions) of a program. The
program phase could be defined as a set of intervals
within a program’s execution that have homogeneous
behavior, including the cache miss, Instruction–Per-
Cycle (IPC) and power consumption, and similar
resource requirements, regardless of temporal
adjacency. A phase can reoccur multiple times through
the program’s execution. The program phase
classification could be defined as partitioning the
program into groups of intervals with similar behavior,
using a certain similarity metric and similarity
threshold.

Recent researches classify and predict phases in
program execution using varieties of techniques. The
approach of Sherwood [4] focuses on identifying
phase behavior by tracking executed code. In another
approach of Dhodapkar and Smith [5], phase behavior
can be detected by examining a program’s working set.
And other techniques like those make use of
conditional branch counts [6], data reuse distance [7].

Program Phase identification and detection can be
exploited to save energy by dynamically reconfiguring
caches [5],[6],[8], to guide compiler optimization
[9],[10], to assign processes to cores in a
heterogeneous multi-core architecture [11], and to
reduce the power consumption in mobile processors
[12]. All of these techniques take advantage of
program phase behavior.

In this paper, we proposed a run-time technique to
detect and identify the stable program phases, and use
that to calculate the L2 cache demand for each
program phase, in order to optimize L2 cache
utilization. The proposed technique is called "Cache
Set Signature". In which, the main idea behind the
Basic Block Vector (BBV) [4] and the Working Set
Signature [5] methods are combined to increase the
program phase detection accuracy and exploit the
advantages of them both.

The rest of the paper is laid out as follows. In
Section 2, prior work related to phase-based program
behavior is discussed. Section 3 describes our program
phase detection technique. Experimental setup and
experimental results can be found in Section 4. Finally,
section 5 concludes the paper.

2. Related work

This section presents an overview of the previously
proposed techniques for detecting program phase
changes.

Peter Denning [13] defined “the working set of
information ࢃሺ࢚, ࣎ሻ of a process at time ࢚ to be the
collection of information referenced by the process
during the process time interval	ሺ࢚ െ ࣎, ࢚ሻ”. Typically
the units of information are considered to be memory
regions of fixed size, such as pages.

Dhodapkar and Smith [5] defined a phase as the
maximum interval over which the working set remains
more or less constant. A working set signature is
designed to work as the compact representation for a
complete working set of the program intervals.

Unlike early working set researchers who were
interested in program paging behavior, Dhodapkar and
Smith [5] chose the working set elements to be of
cache line granularity, because it is suitable for dealing
with multi-configuration units (e.g. caches and
predictors) that work at the same granularity. The non-
overlapping windows (intervals) are used instead of
sliding window which was used in paging studies.

The method to form a working set signature is
shown in Figure 1. The working set signature consists
of an n-bit vector, where each entry of that vector
corresponds to a certain memory block. The vector is
cleaned at the beginning of each interval. b: is the least
significant bits of the program counter , where 2b is the
number of instructions contained in the cache line.
m bits are selected from the program counter, and are
used to address 1 bit in the n-bit signature via a
pseudo-random hash function. A bit in the working set
signature vector is set when the corresponding
instruction block is touched.

Fig. 1: Mechanism for collecting the working
 set signature vector [5]

2

 EIJEST Vol. 20 (July 2016) 1–9

A metric called relative signature distance is
used to detect the working set change. Given
two working set signatures to compare S1, and
S2, the total number of ones in the exclusive OR
(XOR) of the signatures is divided by the total
number of ones in the inclusive OR (OR) of the
signatures to obtain a ratio called a relative
signature distance. Where num_of_”1”bit_in()
represents the function that counts the number
of “1” bits in the bit vector [5].

If the working set signatures are very similar, the
relative signature distance δ is close to zero.
Consequently, the two intervals are classified into the
same program phase. If the working set signatures are
very different, the relative signature distance δ is close
to one. Hence, the two intervals are classified into
different program phases. The threshold value is
obtained experimentally by comparison with several
benchmarks.

Dhodapkar and Smith [5] estimated the working set
size by counting the number of non-zero bits in the
signature. Their technique directly configures, i.e.,
without a trial and error process, certain hardware
whose performance depends on the working set size,
including caches and branch predictors . The optimal
configurations along with their corressponding
working sets signatures could be stored. When
a working set repeats itself during program execution,
the optimal configuration could be directly set.

Sherwood [2],[4],[14] developed the Basic Block
Vectors (BBVs) technique in order to capture
information about the way the program changes its
behavior over time. A basic block is defined as a
section of code that is executed from start to finish
with one entry and one exit.

A Basic Block Vector (BBV) is a single
dimensional array with one element in the array for
each basic block in the program. Each element in the
array is the number of times the corresponding basic
block has been touched during an interval of
execution, multiplied by the number of instructions in
that basic block [15].

In the BBV technique proposed by Sherwood,
determination of program behavior is only a function
of what the code is doing at a particular time and how
often, and is independent on any hardware statistics or
any architecture parameters.

The method to form the Basic Block Vector is
shown in Figure 2. Accumulator buckets are the
elements of the Basic Block Vector . Sherwood found
that 32 bucket (32 basic blocks) is sufficient to
distinguish between different phases, even for more
complex programs. So every branch PC is hashed to
one of 32 accumulator buckets (entry). Each
accumulator bucket is a large saturating counter that
gets increased by the number of instructions from the
last branch to the current branch being processed.
Updating the accumulator is performed once for every
branch executed.

Fig. 2: Mechanism for collecting the Basic
Block Vector [14]

At the end of each interval composed of 10 million
instructions [14], a BBV corresponds to that interval is
produced, and the classification stage begins. The Past
Footprints table keeps only single BBV for each
unique phase ID, as a representative of that phase. The
tabled is looked up for a match with each currently
produced BBV. If there is a match, the current
interval's vector is classified into the same phase as the
past footprint vector, and is not inserted into the past
footprint table. If there is no match, then a new phase
is detected, and hence a new unique phase ID will be
created.

Manhattan distance is used in BBVs comparison
[4]. The Manhattan distance is the distance between
two points if the paths can only be taken in parallel to
the axes. Such distance is computed by summing the
absolute value of the element-wise subtraction of two
vectors.

For any two D-dimensional vectors a and b, the
distance can be computed as:

D

i=1
ManhattanDist(a, b) = ∑ |ai – bi | (2)

3

 Ibrahim E. Ziedan et. al./ A Run-Time Program Phase Detection Technique For Optimizing Per-Phase L2 Cache Demand

A phase change is detected and a new phase ID is
generated, when the Manhattan distance between
consecutive BBVs exceeds a preset threshold.

Dhodapkar and Smith [5] used a bit vector to track
the working set of the code (the code blocks which are
touched), during a particular interval. Whereas in
Sherwood [15] technique the proportion of time spent
executing in each code block is tracked. This is an
important distinction. Because in complex programs,
there are many instruction blocks that execute only
intermittently. When tracking the pure working set,
these infrequently executed blocks can disguise the
frequently executed blocks that dominate the behavior
of the application. In other words, by tracking the
frequency of code execution it is possible to
distinguish important instructions (basic blocks) from
a sea of infrequently executed ones [14].

Dhodapkar and Smith [16] conducted a
comparative study among techniques used in detecting
program phase changes. They concluded that BBV
techniques performs better than the other techniques,
providing higher sensitivity and more stable phases.
However, the instruction working set technique yields
30% longer phases than the BBV method, although
there is less stability within phases.

3. The Cache Access Signature technique

In this paper, we propose a technique to: (1) detect
and identify the stable program phases, (2) estimate
and tabulate the L2 cache demand for each program
phase. It's a run-time technique with acceptable and
minimal execution time overhead and memory cost.

Program phase detection based on working set
signatures method has a direct capability to estimate
the program phase cache demand (using working set
size). On the other side, program phase detection based
on BBVs method contains more information compared
to working set signatures one, and produces more
sensitive and efficient phase classification.

The proposed program phase detection technique
combines the two methods, to exploit the advantages
of them both, to increase the program phase detection
accuracy, and to estimate the L2 cache demand for
each phase.

3.1. Investigating the relation between program
phase changes and L2 cache demand

The program cache demand varies according to
different phases during the program execution time.

David Tam [17] used the changes in the L2 cache miss
rate as an indicator of phase transitions. Because it
directly reflects the changes in the application’s cache
usage.

Figure 3 shows the impact of phase changes on the
miss rates of mcf (one of SPEC 2000 Benchmarks) as
an example. The measurements are taken by running
the application 16 times, each time with a different L2
cache size, and using the Performance Monitoring
Unit (PMU) to measure the cache miss rate. The x-axis
shows the execution progress of mcf in terms of the
number of completed instructions. The y-axis
indicates the L2 cache miss rate in terms of the number
of misses per thousand completed instructions
(MPKI). Thus, the graph shows how the L2 cache
miss rate varies during program execution.
mcf oscillates between two phases repeatedly, a phase
with relatively high L2 cache miss rates and a phase
with relatively low L2 cache miss rates [17].

Fig. 3: Miss rate curves at different L2 cache sizes
reflect the program behavior [17]

This graph also indicates how the L2 cache miss
rate diminishes as the size of the L2 cache partitions is
increased. For example, the time-varying miss rate of
the size 16 configuration is always lower than the time-
varying miss rate of the size 15 configuration, which
is always lower than the time-varying miss rate of the
size 14 configuration, etc. So if we have the ability to
estimate the L2 cache size required by each program
phase and allocate the required size to the
corresponding phase, there will be a great potential to
minimize L2 cache misses.

From David Tam studies [17], we can conclude that
tracking L2 miss rates is sufficient to partition the
program into phases. Consequently, we suppose that
tracking L2 cache accesses is also sufficient to detect
and classify the program into different phases.

4

 EIJEST Vol. 20 (July 2016) 1–9

In the proposed technique, the pattern or the way by
which the program uses the L2 cache is tracked.
In other words, the addresses causing L1 data cache
misses, which consequently lead to L2 cache accesses,
are captured. Then those captured addresses are used
to construct a vector called Cache Access Signature
Vector (CASV). Costructed CASVs reflect the pattern
of L2 cache usage of each phase.

3.2. Using Performance Monitoring Unit for tracing
and sampling memory addresses

Most modern microprocessors have Performance
Monitoring Units (PMUs) with integrated Hardware
Performance Counters (HPCs) that can be used to
monitor and analyze performance in real time.

HPCs allow for counting microarchitectural events,
such as branch mispredictions and cache misses. They
can be programmed to interrupt the processor when a
specified number of a certain event occurs. Moreover,
PMUs make various registers available for
inspection, such as the memory addresses causing
cache misses [18].

On Intel x86 processors, it may be possible to use
the Intel Precise Event-Based Sampling (PEBS)
feature of the PMU to capture the required information
[18]. Data Linear Address (DLA) is one of PMU new
features and PEBS improvements in Haswell
architecture. DLA enables capturing of the data linear
address and data source of load/store memory
instructions, at which certain precise memory access
events, such as a data cache miss or a TLB miss, occur.

The proposed technique tracks the L2 cache access
patterns to detect and classify different program
phases. To monitor these patterns, we choose
“MEM_LOAD_UOPS_RETIRED.L1_MISS”, one of
the precise memory access events, which is supported
by both PEBS and DLA facilities [18], [19]. Each time
the number of L1 data cache misses reaches a specific
threshold (sampling period), the respective HPC
overflows. Then, PEBS mechanism causes a sample to
be captured including the linear data address at which
L1 data cache miss occurred.

Perf_events tool, a user-space tool under Linux
kernel, is used to manage HPCs, to capture the
memory addresses causing L1 data cache misses, and
to extract other information from the PMU.
Perf_events tool is extremely useful as it barely adds
any overhead [20].

Fig. 4: The run-time Cache Access Signature
technique for phase detection and classification

3.3. Constructing Cache Access Signature Vector

Figure 4 describes the Cache Access Signature
Vector. CASV is a single dimensional array consisting
of N elements. There is a single element corresponds
to each set in the L2 set-associative cache. Therefore,
N equals the number of L2 cache sets.

The program execution is divided into fixed-size
intervals, with fixed number of instructions I in each.
A single CASV is constructed for each interval.

Memory addresses, at which L1 data cache misses
occurred, are tracked by using PEBS and DLA features
of the PMU. Then a hash function determines the L2
cache set referenced by each address, and then
increments the vector element corresponding to the
referenced L2 cache set.

Each vector element is an M bits saturating counter
that represents number of times the corresponding L2
cache set is referenced during an interval of execution.

At the end of each interval, the CASV is
constructed. Such vector reflects the pattern of L2
cache usage, including not only which L2 cache sets
are referenced during the interval, but also the access
intensity of each set. The intervals that share patterns
or have similar signatures are classified into the same
program phase.

3.4. Signature History Table and phase classification

For phase classification, a table is maintained to
hold the information related to the unique phases,
previously encountered during the program execution.
This table is called the Signature History Table.

Samples of
MemoryAddresses

causing L1 data
cache misses

H

M

N
 entries

Current CASV Signature History Table

P
hase ID

s

 L
2 cache dem

and

R
epresentative
S

ignatures

5

 Ibrahim E. Ziedan et. al./ A Run-Time Program Phase Detection Technique For Optimizing Per-Phase L2 Cache Demand

In which, a single CASV is kept for each phase, along
with a unique phase ID for that signature. Each CASV
stored in the signature history table serves as a
representative of its corresponding phase. The L2
cache demand for each phase is also tabulated.

3.4.1. The Similarity Metric
We define the similarity of two CASVs S1 and S2,

corresponding to two intervals, as their dot product:

Where Sx is the CASV of the interval x, and i is the
ith entry of the vector consisting of N entries. There are
two reasons behind choosing this metric for similarity.
First, it automatically takes into account only those
entries where both vectors have non-zero values. Note
that S1 and S2 have non-zero values in the same entry,
only if the same L2 cache set is referenced during their
corresponding intervals. Second, the metric takes into
account the intensity by multiplying together the
number of times the target L2 cache set is referenced
during both of the compared intervals.

Larger dot product indicates more similarity
between the compared intervals. On the other hand,
totally dissimilar intervals should result in zero values
for their dot product. The value of the similarity
threshold is experimentally set, so as to distinguish
accurately among phases and produce more
homogenous ones.

3.4.2. Classifying the Cache Line Signatures to a
Phase ID

In the classification process, we compare the
current interval signature to a set of representative
signature vectors stored in the Signature History Table
illustrated in figure 4. If there is a match, we classify
the current interval of execution into the same phase as
the phase of the matched representative vector, and the
current vector replaces the matched table entry. If there
is no match, then a new phase is detected, and hence a
new unique phase ID is created and inserted to the
Signature History Table along with its representative
signature vector.

3.4.3. First similar or best similar
In order to improve the homogeneity of our phase

classifications, when multiple signatures satisfy the
similarity threshold, we choose the most similar
representative signature, not the first similar one. In
other words, we choose the phase ID whose
representative signature is most similar to the CASV
of the current interval.

3.4.4. Stable and transition phases
An important aspect of phase classification is how

to handle phase transitions. During the program
execution, the program behavior passes through some
stable long phases and other intervals of transition or
unstable phases in between the stable ones. These
transitional intervals do not last for very long, and
infrequently occur, so it is not worthwhile to optimize
for their behavior.

We group all transitional intervals into a single
phase called Phase Zero. In order to reduce the number
of unique phase IDs generated.

Each entry in the Signature History Table is
augmented with a small counter called Interval
Counter that counts the number of intervals which are
classified into each phase. If the current signature has
no match, a new signature is added to the Signature
History Table, its Interval Counter is set to zero, and
phase ID zero is assigned to that signature. The
Interval Counter is increased every time another
interval is classified into the corresponding phase.
Phase Zero has only a real phase ID, when the Interval
Counter value exceeds a certain threshold. To achieve
more accurate phase classification, number of
intervals which change the phase from transition phase
to a stable one (Transition Threshold), is a subject of
experimental results.

3.5. Estimation for per phase L2 cache demand

In the Signature History Table, representative
signatures reflect the pattern of L2 cache usage of each
phase, so the technique introduces a direct method to
estimate the L2 cache demand for a certain program
phase including all of its intervals that have high
degree of L2 cache usage pattern similarity.

L2 cache demand or number of cache sets required
by any program phase is equal to the number of non-
zero elements in the corresponding representative
CASV. Allocating L2 cache size per phase basis is
beyond the scope of this paper, and it is a point of
future research.

4. Experimental Results

4.1. Experimental Setup

Our experiments and analysis are performed on
Intel Core i7 machine running Linux kernel (version
4.2.0-21-generic). The hardware specifications are
described in Table 1.

N-1

i=0
Similarity (S1 , S2) = ∑ S1 [i] × S2 [i] (3)

6

 EIJEST Vol. 20 (July 2016) 1–9

Table 1. Intel Core i7 specifications

Item Specification

of Chips 1

of Cores 2 per chip

CPU Core Inter Core i7 – 4510U, 2.6GHz, 2-way SMT

L1 ICache 2 × 32 KB, 8-way set associative, 64 bytes line size

L1 DCache 2 × 32 KB, 8-way set associative, 64 bytes line size

L2 Cache 2 × 256 KB, 8-way set associative, 64 bytes line size

L3 Cache 4 MB, 16-way set associative, 64 bytes line size

RAM 8GB

A simple benchmark is developed to test the
proposed technique on. The testing program exhibits
different behaviors, i.e. some small portions are CPU-
bound code, and other portions, which dominate most
of the program execution, walk through memory using
different fashions. The variance introduced through
the testing program aims to: first, access different
memory locations. Second, generate different miss
rates on the level of L1 data cache.

4.2. Demonistrating the Correlation between IPC
variation and the changes in L2 cache access pattern

As Figure 5 shows, the IPC variation in the program
(the upper graph) has a strong correlation with the
phase changes detected by the proposed technique (the
lower graph). Consequently, our technique is able to
not only detect phases that reflect the program
behavior but also track the boundaries of behavior
changes.

Fig. 5: Correlation between changes in the IPC and
phase changes detected by the proposed technique

4.3. The intra-phase homogeneity evaluation

Homogeneous phase means that architectural
metrics such as IPC, should have quite similar values
at all the intervals that the phase occurs in. To quantify
the extent to which the proposed technique achieves
this goal, the homogeneity of IPC on a per-phase basis
is measured for the phases detected at run-time.

IPC is calculated for each interval of execution.
Then, average IPC is calculated for each phase, i.e. for
all intervals which are classified into that phase. The
standard deviation in IPC values, in addition to their
average, are shown in Table 2.

When we compare the standard deviation of Phase
4 or Phase 5, the longest phases detected by our
technique, with that of the entire program (denoted by
“Full”), we can see that after dividing the program into
phases, each phase has a little variation within itself.

The entire testing program has IPC CoV (standard
deviation / average) of 17.2%. By dividing it up into
different phases, we achieved overall IPC CoV of
5.6%. Therefore, our technique demonstrates its
ability to detect phases with high intra-phase
homogeneity.

Table 2. Examination of the per-phase homogeneity

Phase ID Full Phase 4 Phase 5

Percentage of Execution 100% 40.25% 38.69%

IPC (Average) 1.978 1.915 1.734

IPC (Standard Deviation) 0.34 0.105 0.153

CoV of IPC (%) (Standard Deviation / Average) 17.189% 5.48% 8.824%

4.4. Impact of the similarity threshold

The similarity threshold determines how much two
intervals can deviate from each other without being
classified into separate phases. Changes in the
similarity threshold will affect the number of
generated phase IDs, and the intra-phase homogeneity.

Figures 6 and 7 respectively show the number of
detected phases and the IPC CoV values at different
similarity thresholds. The number of detected phases
increases as we increase the similarity threshold. At
similarity threshold of zero, 17.2% is the highest value
for the overall CoV calculated when treating the whole
program as a single big phase. Then, the overall CoV
decreases indicating that we can produce more
homogeneous phases by using higher similarity
thresholds. By fine tuning, the suitable similarity

7

 Ibrahim E. Ziedan et. al./ A Run-Time Program Phase Detection Technique For Optimizing Per-Phase L2 Cache Demand

threshold value is picked up, which produces few
phases with low overall CoV.

4.5. Impact of the transition threshold

As previously explained in section 3.4.4, it is
important to identify the infrequently occurring
behaviors and isolate their transitional intervals into a
single transition phase which we called Phase Zero. A
new phase ID is only generated, if the number of times
in which a representative signature appears, exceeds a
preset Transition Threshold. Otherwise Phase Zero is
generated.

Fig. 6: Number of detected phases at
different similarity thresholds

Fig. 7: The overall CoV in IPC changes according
 to different similarity thresholds

Fig. 8: The impact of applying Transition Phase
utility on the number of detected phases

As illustrated in Figure 8, the number of detected
phases is inversely proportional to the value of the
transition threshold. “W/O Trans” means that the
phases are detected without applying the utility of the
transition phase, i.e. once a new signature appears, a
new phase ID is generated. “Trans 2” means that the
representative signature must appear twice before it is
considered stable, and a new phase ID is assigned to it.
After applying the transition phase utility, the number
of detected phases is significantly reduced. We can see
that tens of phase IDs are generated instead of
hundreds.

5. Conclusion

This thesis introduced an efficient run-time phase
detection and classification technique, that is based on
tracking changes in the L2 cache access pattern of
different portions in the program execution. Our
evaluation shows that the average execution time
overhead was about 4%.

We examined how the Performance Monitoring
Unit (PMU) and its related tools could be used to
sample the memory addresses causing L1 data cache
misses. This data collected through lightweight
hardware monitoring, is used to construct the Cache
Access Signature Vectors (CASVs) which accurately
reflect the L2 cache access patterns for each interval of
execution. By comparing CASVs on-the-fly, our
technique accurately classifies the program execution
intervals into phases. We show that the variation in, an
important architectural metric, IPC has a strong
correlation with the phase changes detected by our
technique.

The proposed technique demonstrates its ability to
detect phases with high intra-phase homogeneity.
Hence, any optimization adapted and applied to a
single segment of execution from one phase, will
potentially apply well to the other parts of that phase.
Furthermore, our technique is able to capture long
stable phases, that is the major beneficiary of run-time
optimizations. Grouping transitional intervals into
“Phase Zero”, improves the detection accuracy by
significantly reducing the number of detected phases

We show that picking the suitable similarity
threshold should balance the trade-off between
homogeneity (IPC CoV), and number of detected
phases.

The direct capability of the proposed technique to
estimate and tabulate L2 cache demand for each phase,
is considered as an advantage, and makes the

31

101

138

167

202

0
20
40
60
80

100
120
140
160
180
200
220

10 50 100 150 200

N
um

be
r

of
 d

et
ec

te
d

ph
as

es

Similarity Threshold

17.2

12.6

5
3.7

2.4 1.7

0
2
4
6
8

10
12
14
16
18
20

٠ ١٠ ٥٠ ١٠٠ ١٥٠ ٢٠٠

IP
C

 C
oV

 (
%

)

Similarity Threshold

31

101

138

167

202

8 10 12 18 20
4 7 10 12 15

3 4 5 9 13

0
20
40
60
80

100
120
140
160
180
200
220

١٠ ٥٠ ١٠٠ ١٥٠ ٢٠٠

N
um

be
r

of
 d

et
ec

te
d

ph
as

es

Simirlarity Threshold

W/O Trans Trans 2 Trans 4 Trans 8

8

 EIJEST Vol. 20 (July 2016) 1–9

technique to be distinctive. This is mainly because per-
phase tabulated L2 cache demand estimation, could be
exploited for reducing L2 cache miss rates, and
optimizing L2 cache utilization.

For future research, the technique will be tested on
SPEC CPU Benchmarks, and comparing its findings
with other techniques tested on the same benchmarks.
We intend to extend our technique to be able to predict
the phase ID of the next interval of execution, and to
use the per-phase tabulated L2 cache demand to
optimize for the reoccurring phases.

References

[1] T. Sherwood and B. Calder, "Time varying behavior of
programs", Technical Report UCSD-CS99-630, UC San
Diego, 1999.

[2] T. Sherwood, E. Perelman, and B. Calder, "Basic block
distribution analysis to find periodic behavior and simulation
points in applications", In International Conference on Parallel
Architectures and Compilation Techniques, 2001.

[3] Jeremy Lau, Stefan Schoenmackers, and Brad Calder,
"Transition Phase Classification and Prediction", In the 11th
International Symposium on High Performance Computer
Architecture, 2005.

[4] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, "
Automatically characterizing large scale program behavior", In
Proceedings of the 10th International Conference on
Architectural Support for Programming Languages and
Operating Systems, 2002.

[5] Dhodapkar and J. E. Smith, "Managing multi-configuration
hardware via dynamic working set analysis", In 29th Annual
International Symposium on Computer Architecture, 2002.

[6] R. Balasubramonian, D. H. Albonesi, A. Buyuktosunoglu, and
S. Dwarkadas, "Memory hierarchy reconfiguration for energy
and performance in general purpose architectures", In MICRO
33rd, pp 245–257, 2000.

[7] X. Shen, Y. Zhong, and C. Ding, "Locality phase prediction",
SIGPLAN Not., 39(11):165–176, 2004.

[8] Dhodapkar and J. E. Smith, "Dynamic microarchitecture
adaptation via co-designed virtual machines", In International
Solid State Circuits Conference, 2002.

[9] R. D. Barnes, E. M. Nystrom, M. C. Merten, and W. W. Hwu.,
" Vacuum packing: Extracting hardware-detected program
phases for post-link optimization", In 35th International
Symposium on Microarchitecture, 2002.

[10] M. Merten, A. Trick, R. Barnes, E. Nystrom, C. George, J.
Gyllenhaal, and Wen mei W. Hwu., " An architectural
framework for run-time optimization", IEEE Transactions on
Computers, 50(6):567–589, 2001.

[11] R. Kumar, K. Farkas, N. Jouppi, P. Ranganathan, and D.
Tullsen, " Processor power reduction via single-ISA
heterogeneous multi-core architectures", Computer
Architecture Letters, 2, 2003.

[12] Jun Yao, Hajime Shimada, Yasuhiko Nakashima, Shin-ichiro
Mori, and Shinji Tomita, "Program Phase Detection Based
Dynamic Control Mechanisms for Pipeline Stage Unification
Adoption", ISHPC 2005 AND ALPS 2006, LNCS 4759, pp.
494-507, 2005.

[13] Denning, P.J., "The working set model for program behavior",
Communications of the ACM, 5/1968, Volume 11, pp. 323-
333, 1968.

[14] T. Sherwood, Suleyman Sair, and Brad Calder, " Phase
Tracking and Prediction", In Proceedings of the 30th
International Symposium on Computer Architecture (ISCA),
pp. 336-347, 2003.

[15] T. Sherwood, Erez Perelman, Greg Hamerly, Suleyman Sair,
and Brad Calder, "Discover and exploiting program phases",
IEEE Computer Society, 0272-1732/03, 2003.

[16] Dhodapkar and James E. Smith, "Comparing Program Phase
Detection Techniques", In the 36th International Symposium
on Microarchitecture, pp 217–227, 2003.

[17] David Tam, "Operating System Management of Shared Caches
on Multicore Processors", Ph.D. Thesis, Department of
Electrical and Computer Engineering, University of Toronto,
2010.

[18] Intel 64 and IA-32 Architectures Software Developer’s
Manual. Intel Corporation, volume 3B: System Programming
Guide Part 2, 2015.

[19] Stephane Eranian, "Update on perf_events", CERN workshop,
2013.

[20] Georgios Bitzes, and Andrzej Nowak, "The overhead of
profiling using PMU hardware counters", Technical Report,
CERN Openlab, 2014.

9

