
The Egyptian Int. J. of Eng. Sci. and Technology
Vol. 17, No. 1 (Jan. 2014)

IMPACT OF GENETIC ALGORITHM OPERATORS ON ITS
PERFORMANCE IN SOLVING FLOW SHOP SCHEDULING PROBLEMS*

Gamal M. Nawara, Adel A. Ibrahim, Raafat H. Elshaer, Hani A. Al–rawashdeh +

Industrial Eng. Dept., Faculty of Eng., Zagazig University, Egypt

ABSTRACT

The primary objective of flow shop scheduling is to obtain the best sequence which optimizes various
objectives such as makespan, total flow time, total tardiness, or number of tardy jobs, etc. Due to the
combinatorial nature of the flow shop problem (FSP) there is a lot of artificial intelligence methods
proposed to solve it. The Genetic Algorithm (GA), one of these methods, is considered a valuable
search algorithm capable of finding a reasonable solution in a short computational time. GA operators,
(selection, crossover and mutation process), give different forms that can be combined to give various GAs.

In this paper we investigate the impact of selection, crossover and mutation process on the quality of
the GA solution in solving the flow shop scheduling problems. In this study, four selection methods,
seventeen crossover methods and eight mutation methods are investigated. The computational results
show that there are significant differences among the investigated methods on the performance of the
proposed GA.

KEY WORDS: Flow Shop Scheduling; Genetic Algorithm; Makespan; Selection Methods; Crossover
Methods; Mutation Methods.

IMPACT DES OPERATÉURS ALGORITHME GÉNÉTIQUE SUR SA PERFORMANCE
POUR LA RÉSOLUTION DE PROBLÉMES D'ORDONNANCEMENT DE FLUX BOUTIQUE

RESUME

L'objectif principal de la boutique de débit horaire est d'obtenir la meilleure séquence qui optimise divers objectifs
tels que makespan, le temps d'écoulement total, les retards ou nombre d'emplois tardives, etc. En raison de la nature
combinatoire du problème de flow shop (FSP), il est un grand nombre de méthodes d'intelligence artificielle a proposé
de le résoudre. L'algorithme génétique (GA), une de ces méthodes, est considéré comme un algorithme de recherche
précieux capable de trouver une solution raisonnable dans un temps de calcul court. Opérateurs GA, (sélection,
croisement et processus de mutation), donnent des formes différentes qui peuvent être combinés pour donner différents
gaz.

 Dans cet article, nous étudions l’impact de la sélection, le croisement et processus de mutation sur la qualité de la
solution GA dans la résolution des problèmes d'ordonnancement d'atelier d’écoulement. Dans cette étude, quatre
méthodes de sélection, dix-sept méthodes de croisement et de mutation huit méthodes sont étudiées. Les résultats des
calculs montrent qu'il existe des différences significatives entre les méthodes d'enquêtes sur la performance de la
proposition de GA.

MOTS CLES : Flux Ordonnancement D'atelier; Algorithme Génétique; Makespan; Méthodes De
Sélection, Les Méthodes Crossover; Méthodes Mutation.

* Received: 29/5/2013, accepted: 4/12/2013, Ref. No. 152, (Original paper).
+ Contact author (adel9938@hotmail.com).

EIJESTS

25

IMPACT OF GENETIC ALGORITHM OPERATORS ON ITS PERFORMANCE IN SOLVING FLOW
SHOP SCHEDULING PROBLEMS
Nawara, Ibrahim, Elshaer, Al–rawashdeh

1. INTRODUCTION
FSP is solvable to optimality in polynomial

time when number of machines are limited to
two, ,. When the FSP enlarges as
including more jobs and machines (), it
becomes a combinatorial optimization
problem. It is clear that combinatorial
optimization problems are NP-hard problem
class, and near optimum solution techniques
are preferred for such problems [3].

1.1 Flow Shop Scheduling Problem (FSP)

The FSP entails a number of assumptions:
All jobs are independent and available for

processing at time 0.
Machines are continuously available (no

breakdowns).
Each machine can only process one job at

a time.
Each job can be processed only on one

machine at a time.
Once the processing of a given job has

started on a given machine, it cannot be
interrupted and processing continues until
completion (no preemption).

Setup time and transportation time of the
jobs are sequence independent and are
included in the processing times, or ignored.

In-process inventory is allowed. If the next
machine on the sequence needed by a job is
not available, the job can wait and joins the
queue at that machine.

The processing times of the jobs at the
machines are known in advance.

1.2 A GA for the FSP

GA is a search technique based on the
mechanics of natural genetics and survival of
the fittest. The GA object determines which
individuals should survive, which should
reproduce, and which should die. Since GAs
are adaptive and flexible.
 It is well known that the GA efficiency
depends to a high degree upon the selection of
the good genetic algorithm operators and
parameters. The different forms of selection,
crossover and mutation process in GA method
can be combined to give various GAs that can

be impact on the quality of the solution. The
following are generic steps for FSP GA [20]:
Step 1. Based on the later review, the
permutation encoding is adapted for all FSP
genetic algorithms. That is, [3 4 2 1 5], a
chromosome, represents a job sequence where
job 3 is processed first, and then job 4 is
processed, and so on.
Step 2. In order to find the optimal solution of
the problem, standard GA starts from a set of
assumed or randomly generated chromosomes
called initial population with size Ps, a set of
solutions (chromosome) over sequence of
generation.
Step 3. Each chromosome in the population is
evaluated based on fitness criterion.
Step 4. Check termination criterion, Tc, if
happening, stop and get the best solution. Else,
reproduce a new population as follows:
Step 5. Two parent strings are drawn from the
population according to a selection method,
Sm, for reproduction. The number of copies
reproduced by an individual parent is expected
to be directly proportional to its fitness value.
Step 6. Crossover method, Cm, is used with
probability Pc to recombine the two selected
parents to get better offspring.
Step 7. Mutation method, Mm, is applied with
probability Pm on the offspring generated by
the Cm. It helps to preserve a reasonable level
of population diversity.
Step 8. If the new population generated
completed, go to Step#3. Else, go to Step#5.

2. LITERATURE REVIEW
Chen et al generated a GA based

heuristic for FSP with makespan criterion,
in which the initial population was
generated by CDS and RA [4]. A set of 200
problems were generated for 20 different
combinations of job size and number of
machines, n {7,10,15,25} and
m {4,5,8,10,15} . According to generated
results of trial examples, the GA default
operators are proposed as: roulette wheel
selection (RWS), and partially mapped
crossover (PMX).

Reeves [16] proposed a GA for finding the
minimum makespan of n-job, m-machine
permutation FSP. The initial population is
randomly generated. The author used

26

The Egyptian Int. J. of Eng. Sci. and Technology
Vol. 17, No. 1 (Jan. 2014)

ranking selection (RKS), in selecting parent
1 whereas parent 2 is chosen randomly. The
default GA parameters used were: one point
crossover (1PX), and two point crossover
version2 (2PXV2), and two types of
mutation, arbitrary two-job change mutation
(AR2JM), and shift mutation (SHM). On
Taillard benchmarks problems, the
performance of the algorithm is compared
with that of a native neighborhood search
technique and with a simulated annealing
(SA) algorithm.

Murata et al [12] applied a GA with an
objective of minimizing the makespan, and
examined two hybridizations of the GA with
other search algorithms. As test problems,
they randomly generated 100 FSP with 20
jobs and 10 machines and 50 jobs and 10
machines. The initial population is randomly
generated. They used roulette wheel
selection(RWS) and examined the following
10 crossover operators: 1PX, three versions
of two point crossover (2PXV1, 2PXV2,
2PXV3), two version of position based
crossover(PBXV1,PBXV1), edge
recombination crossover (ERX), partially
matched crossover (PMX), and cycle
crossover (CX)and the following four
mutation operators: adjacent two-job change
(AD2JM), arbitrary two-job change
mutation (AR2JM), arbitrary three-job
change (AR3JM), and shift mutation
(SHM). They showed that2PXV2 and SHM
are effective for this problem. Using
simulations on the test problems, they found
that the following specifications worked
best (, 2PXV2, and SHM). Based on the
default GA specification, the authors
compared the GA with three search
algorithms, local search (LS), tabu search
(TS) and simulated annealing (SA).

Tang and Liu [20] proposed a GA for FSP
with the objective to minimizing mean flow
time. Two new operations are introduced
into the algorithm to improve the general
GA procedure. One replaces the worst
solutions in each generation with the best
solutions found in previous generation. The
other improves the most promising solution
through local search. Their GA uses the

following operators, RWS, PMX, SHM. To
evaluate the performance of the proposed
GA, Computational experiments were
carried out on a number of randomly
generated problem instances,

and .
Eliter et al [8] proposed aGA -based heuristic
for the FSP with makespan criterion. They
used ps-1 schedules produced by CDS
method and Dannenbring’s method to
generate the initial population. Based on
Chen et al, the authors used RWS, linear
order crossover (LOX) and SHM. In order
to examine the effectiveness of the proposed
GA, the performance of the algorithm is
compared over 230 generated problems
forming 23 different combination of jobs
and machines (n/m= 8/5, 8/10, …,35/35,
40/40) with the NEH algorithm.

Iyer and Saxena [11] proposed a GA for the
permutation FSP with the objective of
minimizing the makespan. They redesigned
the standard GA implementation by using
structural information from the problem.
They considered five different problem
dimensions, . They
used two methods to simulate the matrices
of processing times, one using uniform
distributions and the other using normal
distributions. The initial population is
randomly generated. They used RWS, 1PX
,longest common subsequence crossover
(LCSX),arbitrary two-job change mutation
(AR2JM), and the following parameters
based on Bagchi and Deb [2]. The authors
found that the (LCSX) dominates the (1PX)
in most of the simulation runs and it
demonstrates an ability to improve even after a
large number of iteration, while the (1PX)
improves very slowly.

Ruiz et al [18] proposed a hybrid genetic
algorithm (HGA) that uses a simple form of
local search based on the NEH heuristic.
The objective is to minimize the makespan.
They have chosen two selection schemes,
RKS and tournament selection (TTS) and
one mutation method, SHM. They used
eight crossover operators, 4 new and 4 from

27

IMPACT OF GENETIC ALGORITHM OPERATORS ON ITS PERFORMANCE IN SOLVING FLOW
SHOP SCHEDULING PROBLEMS
Nawara, Ibrahim, Elshaer, Al–rawashdeh

literature, similar job order crossover
(SJOX), Similar block order crossover"
(SBOX), partially mapped crossover (PMX),
order crossover (OX), one-point order
crossover (1PX) and two-point order
crossover version2 (2PXV2).
Sadegheih [19] proposed a GA with the
following characteristic: ranking selection
(RKS), order-based crossover (OBX).
Wang et al [22] proposed a Hybrid Genetic
Algorithm (HGA) for permutation FSP with
limited buffers with the objective to
minimize the makespan. They used RWS,
four different crossover operators: linear
order crossover LOX, PMX, 1PX, and non-
abel group based crossover (NAX) and three
mutation operators: AR2JM, INMV1, and].
SHM .
Octavia et al [15] discussed the application
of HGA to solve practical FSP. The HGA
was run on the following sets of operators:
RWS, SBOX and SHM.
Adusumilli et al [1] proposed a GA for two
machines FSP to minimize some of
finishing time of arbitrary number of jobs.
The proposed GA operators are RWS,
PMX, and AR2JM.
Kahraman et al [9] proposed a GA for HFSP
with the objective of minimizing makespan.
They gave an evaluation of the different
parameters and operator of the algorithms
using the following experiment: two
selection methods: RWS and TTS with
probabilities (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.9, and 1.0), six crossover operators
(PBX, OX, PMX, CX, LOX and OBX), and
five mutation operators: (AD2JM, AR2JM,
AR3JM, SHM and INMV1). The proposed
algorithm is tested on Carlier and Neron's
benchmark problems. The authors found that
the best parameters set are: RWS with
selection probabilities (0.1, 0.2, and 0.4),
PBXand INMV1.
Kim and Jeong [10] proposed a flow shop
scheduling with no-wait flexible lot
streaming (FSS-nwFLS) using adaptive GA
to minimize the makespan. An adaptive GA
composed of three main steps. The first step
is PBX of products. The second step is an
iterative hill-climbing algorithm to improve
the current generation. The last step is the
adaptive regulation of the crossover and

mutation rates. The proposed GA use
randomly generated initial population,
RWS. They run 14 type of problems
considering the number of products (5, 10,
15, 20, 25, 30, 50), the number of sub-lots
(15, 25, 30, 45, 50, 60, 65, 75, 90, 100, 125,
150, 250). The results of the proposed GA
are compared with other two traditional
GAs.
Engin et al [7] proposed a GA based on a
permutation representation of the n jobs of
HFSP with multiprocessor task problems to
minimize makespan. They proposed the
following experiment: randomly generated
initial population. Selection methods: RWS
and TS with probabilities Є

, six crossover operators: (PBX, OX, PMX,
CX, LOX and OBX), five mutation operators:
(AD2JM, AR2JM, AR3JM,SHM and
INMV1). The proposed approach was tested
on a set of 240 problems.
Verma and Dhingra [21] described
multiprocessor task scheduling in the form of
permutation FSP, which has an objective
function for minimizing the makespan. They
proposed the following GA: randomly
generated initial population, RWS, two
crossover operators: 2PXV2and PMX, and
INMV1.
Chen et al [4] proposed a self-guided GA
for permutation to minimize FSP’s
makespan. In the proposed algorithm they
used TTS, 2PXV2, andAR2JX. They
conducted extensive computational to
compare the self-guided GA with several
other algorithms using the 120 Taillard
instances.

3. SUMMARY
A summary of different GAs operators

mentioned in the reviewed literature:
selection methods, crossover and mutation
operator methodsare shown in Table 1. We
can notice that problem sizes range from n

 [8 – 500] and m [2 – 40].
Based on Table 1, we count 4 selection
methods, 17 crossover operators and 8
mutation operators used in designing different
genetic algorithms for solving FSP as shown in
Tables 2, 3 and 4, respectively.

28

The Egyptian Int. J. of Eng. Sci. and Technology
Vol. 17, No. 1 (Jan. 2014)

Table 1: Summary of Genetic Algorithms Operators Used for Solving FSP

Author(s) Year Criterion

GA operators Max
problem
size

System
specification

Selection
Method
(Sm)

Crossover
Method (Cm)

Mutation
Method
(Mm)

Chen et al.

Reeves

Murata et al.

Tang and Liu

Eliter et al.

Iyer and Saxena

Ruiz et al.

Sadegheih

Wang et al.

1995

1995

1996

2002

2004

2004

2006

2006

2006

makespan

makespan

makespan

mean flow
time

makespan

makespan

makespan

makespan

makespan

RWS

RKS
RMS

RWS

RWS

RWS

RWS

RKS
TTS*

RKS

RWS

PMX

1PX*

2PXV1

1PX
2PX(1*,2,3)
PMX(1,2)
ERX
PMX
CX

PMX

LOX

1PX
LCSX*

SJOX
SBOX*

SJ2OX
SB2OX
PMX*

OX
2PX
1PX

OBX

LOX

AR2JM
SHM*

AD2JM
AR2JM
AR3JM
SHM*

SHM

SHM

AR2JM

SHM

AD2JM*

INMV1
SHM

SHM

(25, 15)

(75,20)

(50.10)

(150,20)

(40,40)

(100,40)

(500,20)

(8,7)

(100,20)

Programmed using
Fortran 77 & run on
a SUN 4/490
Workstation.

Programmed in
Pascal, & run on a
Sequent S82
Computer

Pentium PC
Computer

Programmed in
Pascal, and run on a
Pentium IV(256
MB) Computer

Programmed in C,
and run on PCs
Pentium Processors

Programmed in
(Delphi 7.0), and
tested on Intel
Pentium IV
Processor running
at 2.8 GHz with
512 MB

Implemented in
Turbo C++

Coded in C++ and
run on a PC with
AMD Athlon 1.0
GHz CPU

Implemented in
Microsoft Visual
Basic 6.0

Coded in a C++ &

29

IMPACT OF GENETIC ALGORITHM OPERATORS ON ITS PERFORMANCE IN SOLVING FLOW
SHOP SCHEDULING PROBLEMS
Nawara, Ibrahim, Elshaer, Al–rawashdeh

Author(s) Year Criterion

GA operators Max
problem
size

System
specification

Selection
Method
(Sm)

Crossover
Method (Cm)

Mutation
Method
(Mm)

Octavia et al

Adusumilli et al.

Kahraman et al.

Kim and Jeong

Engin et al.

Verma and
Dhingra

Chen et al.

2007

2008

2008

2009

2011

2011

2012

makespan

makespan

makespan

makespan

makespan

makespan

makespan

RWS

RWS

RWS*

TTS

RWS

RWS*

TTS

RWS

TTS

PMX*

1PX
NAX

SBOX

PMX

PBX*

OX
PMX
CX
LOX
OBX

PBX

PBX*

OX
PMX
CX
LOX
OBX

2PX
PMX

2PX

AD2JM

AD2JM
AR2JM
AR3JM
SHM
INMV1*

AR2JM
AD2JM*

SHM
INMV1

INMV1

AD2JM

SHM

n=120
factory

(20,2)

(15,10)

(50,5)

(100,8)

(15,4)

(200,20)

developed at MIT
& run under GNU
g++ Complier

Implemented in
Borland Delphi and
run on a PC P4
Processor with 3
GHz, 512 MB

Implemented in the
Java using an IBM
P 1.4 GHz
Computer with 512
MB

Implemented in
Borland Delphi and
run on a PC P4
Processor with 3
GHz, 512 MB

Implemented using
MATLAB at
command line

Pentium 4 with
3GHz Processor
and 512 MB.

*Shows the best GA operators (Sm, Cm and Mm).

30

The Egyptian Int. J. of Eng. Sci. and Technology
Vol. 17, No. 1 (Jan. 2014)

Next section, an experiment is designed to
investigate the impact of these methods on the
performance of the GA in solving FSP problem.

4. EXPERIMENTAL SET UP
A genetic algorithm is built based on the steps
mentioned in the subsection (1.2) using C #
language (Microsoft Visual Studio 2010). The
six selection methods mention in Table 2, the
seventeen crossover method mention in Table
3, and the eight mutation method mentioned in
Table 4 are coded in the proposed GA.

4.1 Experimental Design
The tournament selection method is used

with 3 different tour sizes, 2, 3 and 4. They are
coded as TTS2, TTS3 and TTS4 respectively.
Therefore, the number of selection methods
became 6. And a two types of crossover operator
methods are used first time for FSP (Maximal
Preservative Crossover (MPX) and Alternating
Position Crossover (APX)).Therefore, the
number of crossover operator methods becomes
17.And we used one types of mutation operator
methods used first time for FSP (Scramble
mutation (SCM)).Therefore, the number of
mutation operator methods became 8.

Table 2: Selection Methods Used in FSP
Selection Methods (Sm) Codes
1 Random Selection RMS
2
3
4
5
6

Roulette Wheel Selection
Rank Selection
Tournament Selection(tour size 2)
Tournament Selection(tour size 3)
Tournament Selection(tour size 4)

RWS
RKS
TTS2
TTS3
TTS4

The full factorial experiment is as follows:

1. Based on Tables 2, 3, and 4 we have the
following: 6 selection methods, 17 crossover
methods and 8 mutation methods.
2. The GA depends also on the following other
parameters: population size (Ps), crossover
probability (Pc) and mutation probability (PM).
We propose values for these parameters as shown
in Table 5. Based on Table 5 we have the
following: 4 Ps, 10 Pm, and 5 Pc.
Therefore, the total number of combination = 6
Sm * 17 Cm * 8Mm* 4 Ps * 5 Pc * 10 Pm =
163200.

Table 3: Crossover operators methods used
in FSP

Crossover Operator
Methods(Cm)

Codes

1 One-Point Crossover 1PX
2 Two-Point Crossover Version1 2PXV1
3 Two-point Crossover Version2 2PXV2
4 Two-Point Crossover Version3 2PXV3
5 Position Based Crossover

Version1
PBXV1

6 Position Based Crossover
Version2

PBXV2

7 Linear Order Crossover LOX
8 Partially Mapped Crossover PMX
9 Longest Common Subsequence

Crossover
LCSX

10 Order Crossover OX
11 Order Based Crossover OBX
12 Cycle Crossover CX
13
14
15
16
17

Similar Block Order Crossover
Similar Job Order Crossover
Order-Based Crossover
Maximal Preservative
Crossover
Alternating Position Crossover

SBOX
SJOX
OBX
MPX
APX

Table 4: Mutation Operator Methods used
in FSP

Mutation Operator Methods
(Mm)

Codes

1 Adjacent Two-Job Change
Mutation

AD2JM

2 Arbitrary Two-Job Change
Mutation

AR2JM

3 Arbitrary Three-Job Change AR3JM
4 Shift Mutation SHM
5 Inversion Mutation Version1 INMV1
6 Inversion Mutation Version2 INMV2
7
8

Displacement Mutation
Scramble mutation

DM
SCM

4.2 Test Problem
Every combination of the experiment is tested

on the first Taillard problem, ta001. The problem
consists of 20 jobs and 5 machines. The
processing time matrix is drown from uniform
distribution [1, 99]. The upper bound

31

IMPACT OF GENETIC ALGORITHM OPERATORS ON ITS PERFORMANCE IN SOLVING FLOW
SHOP SCHEDULING PROBLEMS
Nawara, Ibrahim, Elshaer, Al–rawashdeh

Table (5): Genetic algorithm Parameters
Genetic algorithm Parameters Values

Crossover Probabilities (Pc) 0.3, 0.4, 0.5, 0.6, 0.7

Mutation Probabilities (Pm)
0.001, 0.005, 0.01, 0.02, 0.05, 0.07, 0.1,

0.15, 0.2, 0.3

Population Size (Ps) 10 20 30 50

Max. number of generation 1000 500 333 200

of this problem is 1278 time units. The
problem data and information can be
downloaded from the OR Library.

5. COMPUTATIONAL RESULTS
All computational results have been

obtained on a Core 2 Duo 2.0 GHz personal
computer. Each combination is run 10 times.
Then, the best, average and standard deviation
of makespan for the 10 runs are computed.
The performance measure used is the number
of combinations that give the upper bound of
the test problem (i.e. ta001) based on a specific
operator. This measure called . Where α
{Sm,Cm,Mm},
Sm={RMS,RKS,RWS,TTS2,TTS3 and TTS4},
Cm={1PX, 2PXV1, 2PXV2, 2PXV3, PBXV1,
PBXV2, LOX, PMX, LCSX, OX, OBX, CX,
ER, MPX, SJOX, SBOX, APX}, and
Mm={AD2JM, AR2JM, AR3JM, SHM,
INMV1, INMV2, DM, SCM}.
The computational results show that 9041 out
of 163200 combinations give the upper bound
value and the remainders are worse than the
upper bound.
In the following subsections, the impact of the
three GA operators will be investigated based
on Nα = 9041 and tested using chi square test.

5.1 Impact of The Selection Methods (Sm)

Fig.1 shows the distribution of the 9041
combinations on the selection methods.
Applying the chi square test gives P-value
equals 0.0000 which means significant
differences among the selection methods. This
is clear as shown in Fig. 1 that the tournament
selection with tour size=4 (i.e. TTS4) gave

best results than other selection methods, then
(TTS3, TTS2, and RKS) respectively, and we
see that the RMS and RWS gave worst
results. This finding actually is surprising
where the tournament method have not been
paid attention from the researchers as shown in
Table 1. Moreover, amazing finding is that the
random selection method gets better results
than the roulette wheel selection.

5.2 Impact of Crossover Operator
Methods (Cm)

Fig. 2 shows the distribution of the 9041
combinations on the crossover operator
methods. Applying the chi square test give P-
value equals 1.4059E-226which means
significant differences among the crossover
operator methods. This is clear as shown in
Fig. 2 that the crossover operator methods
(2PXV3) gave best results than other crossover
operator methods, then , (1PX, SBOX,
2PXV1, OBX, SJOX, PBXV1, PBXV2, APX,
LOX, 2PXV2, LCSX and PMX) respectively.
From the fig. we observe that the crossover
operator methods (ERX, MPX, OX and CX)
gave worst results.

5.3 Impact of Mutation Operator
Methods (Mm)

The distribution of the 9041 combinations
on the mutation operator methods is shown in
Fig. 3. Applying the chi square test give P-
value equals 0.0000 which means significant
differences among the mutation operator
methods. This is clear as shown in Fig. 4 that
the adjacent two-job change mutation
(AD2JM) gave best results than other

32

The Egyptian Int. J. of Eng. Sci. and Technology
Vol. 17, No. 1 (Jan. 2014)

Fig. 1: Number of combinations obtained upper bound based on selection method

Fig. 2: Number of combinations obtained upper bound based on crossover method

Fig. 3: Number of combinations obtained upper bound based on mutation method

33

IMPACT OF GENETIC ALGORITHM OPERATORS ON ITS PERFORMANCE IN SOLVING FLOW
SHOP SCHEDULING PROBLEMS
Nawara, Ibrahim, Elshaer, Al–rawashdeh

crossover operator methods, then shift mutation
(SHM). And we see that the other mutation
operator methods gave worst results.

6. CONCLUSIONS

In this study we investigate the impact of the
GA operators (selection methods, Crossover
operator methods and Mutation operator
methods) on the performance of GA in solution
of FSP, we find the following GA operators: 4
selection methods shown in Table 2, 17 crossover
operators shown in Table 3
and 8 mutation operators shown in Table4 used in
designing different genetic algorithms for solving
FSP. Full factorial experiment is designed and
tested on known benchmark problem. The
extensive computational results show that:

Tournament selection method with three tour
sizes (TTS2, TTS3 and TTS4) give best results
from all the selection methods. This finding
actually is surprised us where the tournament
method almost have not been paid attention from
the researchers as shown in Table 1. In addition,
though in most of the previous research papers
roulette wheel selection (RWS) was used widely,
we found its performance is worse than the
random selection.

Two-point crossover version
3(2PXV3)gives better results than all other
crossover methods. Also, many crossover
methods show almost the same high
performance like 1PX, 2PXV1, OBX and
SBOX. Moreover, four methods, CX, EPX,
MPX, and OX, should be avoided when
designing GA because of its bad performance
results.

Adjacent two-job change mutation (AD2JM)
gives the best results from all the mutation
methods. The shift mutation (SHM) is considered
the second best so we note that it is used in most
of the previous research papers It is clear that
FSP problem still needs a further work such as a
comparative study for all the above mentioned
GA operators and parameters to see their impact
on the quality of the problem solution. So, we
recommend the researchers to build up based on
our findings.

REFERENCES

1. Adusumilli, K., Bein, D., and Bein, W., "A
genetic algorithm for two machine flow
shop problem". Proceeding of the Hawaii
International Conference on System Science
41, 2008. pp. 1-8.

2. Bagchi, T.P., and Deb, K., "Calibration of
GA parameters: the design of experiment
approach". Computer Science and
Informatics, 26(3), 1996. pp. 46–56.

3. BetulYagmahan, and Mehmet Mutlu., "A
multi-objective ant colony system algorithm
for flow shop scheduling problem". Expert
Systems with Applications 37, 2010. pp. 1361-
1368.

4. Chen, C.L., Vempati, V.S., and Aljaber, N.,
"An application of genetic algorithms for
flow shop problems". European Journal of
Operational Research 80, 1995. pp. 389-396.

5. Chen, S.H., Chang, P.C., Cheng, T.C.E., and
Zhang, Q., "A self-guided genetic algorithm
for permutation flowshop scheduling
problems". Computer and Operations
Research 39, 2012. pp. 1450-1457.

6. Duda, J., "Local search and nature based
metaheuristic. A case of flow shop
scheduling problem". Proceedings of ISSN
International Multiconference on Computer
Science and Information Technology, 2006.
pp. 17-24.

7. Engin, O., Ceran, G., and Mustafa, K., "An
efficient genetic algorithm of hybrid flow
shop scheduling with multiprocessor task
problems". Applied Soft Computing 11, 2011.
pp. 3056-3065.

8. Etiler, O., Toklu, B., Atak, M., and Wilson,
J., "A genetic algorithm for flow shop
scheduling problems". Journal of the
Operational Research Society 55, 2004. pp.
830-835.

34

The Egyptian Int. J. of Eng. Sci. and Technology
Vol. 17, No. 1 (Jan. 2014)

9. Kahraman, C., Engin, O., Kaya, I., and
Yilmaz, M.K., "An application of effective
genetic algorithms for solving flow shop
scheduling problems". International Journal
of Computational Intelligence System, 1(2),
2008. pp. 134-147.

10. Kim, K., and Joeng, J., "Flow shop
scheduling with no-wait flexible lot
streaming using adaptive genetic
algorithm". International Journal Advance
Manufacturing Technology 44, 2009. pp.
1181-1190.

11. Iyer, K., and Saxena, B., "Improved
genetic algorithm for permutation flowshop
scheduling problem". Computers and
Operations Research 31, 2004. pp. 593-606.

12. Murata, T., Ishibuchi, H., and Tanaka H.,
"Genetic algorithms for flow shop
scheduling.

13. Naderi, B. and Ruiz, R., "The distributed
permutation flow shop scheduling
problem". Computers and Operations
Research, 37(4), 2010. pp. 754-768.

14. Navala, H., "Use of genetic algorithm
based approaches in scheduling of FMS: A
Review". International Journal of Engineering
Science and Technology, 3(3), 2011. PP. 1936-
1942.

15. Octavia, T., Sahputra, I.H., and Soewanda,
J., "Robust-hybrid genetic algorithm for the
flow-shop scheduling problem". Journal
TeknikIdustri, 9(2), 2007. pp. 144-155.
16. Reeves, C. R., "A genetic algorithm for
flowshop sequencing". Computers and
Operations Research, 22(1), 1995. pp. 5–13.

17. Ruiz, R., and Maroto, C., "A
comprehensive review and evaluation of
permutation flow shop heuristics". European
Journal of Operational Research 165, 2005. pp.
479-494.

18. Ruiz, R., Maroto, C., and Alcaraz, J.,
"Two new robust genetic algorithms for the
flowshop scheduling problem". OMEGA,
The International Journal of Management
Science 34, 2006. pp. 461-476.

19. Sadegheih, A., "Scheduling problem
using genetic algorithm, simulated
annealing and the effects of parameter
values on GA performance". Applied
Mathematical Modelling 30, 2006. pp. 147–
154.

20. Tang, L., and Liu, J., "A modified
genetic algorithm for flow shop sequencing
problem to minimize mean flow time".
Journal of Intelligent Manufacturing 13,
2002. pp. 61-67.

21. Verma, R., and Dhingra, S., "Genetic
algorithm for multiprocessor task
scheduling". International journal of computer
science and management studies, 11(2), 2011,
pp 181-185. 181-185.

22. Wang L., Zhang L, and Zhang, D. Z. "An
effective hyprid genetic algorithm for flow
shop scheduling with limited buffers"
computer and operations research, 33, 2006,
pp 2960-2971.

35

