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ABSTRACT 

The primary objective of flow shop scheduling is to obtain the best sequence which optimizes various 
objectives such as makespan, total flow time, total tardiness, or number of tardy jobs, etc. Due to the 
combinatorial nature of the flow shop problem (FSP) there is a lot of artificial intelligence methods 
proposed to solve it. The Genetic Algorithm (GA), one of these methods, is considered a valuable 
search algorithm capable of finding a reasonable solution in a short computational time. GA operators, 
(selection, crossover and mutation process), give different forms that can be combined to give various GAs.

In this paper we investigate the impact of selection, crossover and mutation process on the quality of 
the GA solution in solving the flow shop scheduling problems. In this study, four selection methods, 
seventeen crossover methods and eight mutation methods are investigated. The computational results 
show that there are significant differences among the investigated methods on the performance of the 
proposed GA. 

KEY WORDS: Flow Shop Scheduling; Genetic Algorithm; Makespan; Selection Methods; Crossover 
Methods; Mutation Methods. 

IMPACT DES OPERATÉURS ALGORITHME GÉNÉTIQUE SUR SA PERFORMANCE 
POUR LA RÉSOLUTION DE PROBLÉMES D'ORDONNANCEMENT DE FLUX BOUTIQUE

RESUME

L'objectif principal de la boutique de débit horaire est d'obtenir la meilleure séquence qui optimise divers objectifs 
tels que makespan, le temps d'écoulement total, les retards ou nombre d'emplois tardives, etc. En raison de la nature 
combinatoire du problème de flow shop (FSP), il est un grand nombre de méthodes d'intelligence artificielle a proposé 
de le résoudre. L'algorithme génétique (GA), une de ces méthodes, est considéré comme un algorithme de recherche 
précieux capable de trouver une solution raisonnable dans un temps de calcul court. Opérateurs GA, (sélection, 
croisement et processus de mutation), donnent des formes différentes qui peuvent être combinés pour donner différents 
gaz.

 Dans cet article, nous étudions l’impact de la sélection, le croisement et processus de mutation sur la qualité de la 
solution GA dans la résolution des problèmes d'ordonnancement d'atelier d’écoulement. Dans cette étude, quatre 
méthodes de sélection, dix-sept méthodes de croisement et de mutation huit méthodes sont étudiées. Les résultats des 
calculs montrent qu'il existe des différences significatives entre les méthodes d'enquêtes sur la performance de la 
proposition de GA. 

MOTS CLES : Flux Ordonnancement D'atelier; Algorithme Génétique; Makespan; Méthodes De 
Sélection, Les Méthodes Crossover; Méthodes Mutation. 
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1. INTRODUCTION
FSP is solvable to optimality in polynomial 

time when number of machines are limited to 
two, ,. When the FSP enlarges as 
including more jobs and machines ( ), it 
becomes a combinatorial optimization 
problem. It is clear that combinatorial 
optimization problems are NP-hard problem 
class, and near optimum solution techniques 
are preferred for such problems [3]. 

1.1 Flow Shop Scheduling Problem (FSP)

The FSP entails a number of assumptions: 
All jobs are independent and available for

processing at time 0. 
Machines are continuously available (no

breakdowns). 
Each machine can only process one job at

a time. 
Each job can be processed only on one

machine at a time. 
Once the processing of a given job has

started on a given machine, it cannot be 
interrupted and processing continues until 
completion (no preemption). 

Setup time and transportation time of the
jobs are sequence independent and are 
included in the processing times, or ignored. 

In-process inventory is allowed. If the next
machine on the sequence needed by a job is 
not available, the job can wait and joins the 
queue at that machine. 

The processing times of the jobs at the
machines are known in advance. 

1.2 A GA for the FSP

GA is a search technique based on the 
mechanics of natural genetics and survival of 
the fittest. The GA object determines which 
individuals should survive, which should 
reproduce, and which should die. Since GAs
are adaptive and flexible. 
        It is well known that the GA efficiency 
depends to a high degree upon the selection of 
the good genetic algorithm operators and 
parameters. The different forms of selection, 
crossover and mutation process in GA method 
can be combined to give various GAs that can 

be impact on the quality of the solution. The 
following are generic steps for FSP GA [20]: 
Step 1. Based on the later review, the 
permutation encoding is adapted for all FSP
genetic algorithms. That is, [3 4 2 1 5], a 
chromosome, represents a job sequence where 
job 3 is processed first, and then job 4 is 
processed, and so on.   
Step 2. In order to find the optimal solution of 
the problem, standard GA starts from a set of 
assumed or randomly generated chromosomes 
called initial population with size Ps, a set of 
solutions (chromosome) over sequence of 
generation.  
Step 3. Each chromosome in the population is 
evaluated based on fitness criterion. 
Step 4. Check termination criterion, Tc, if 
happening, stop and get the best solution. Else, 
reproduce a new population as follows: 
Step 5. Two parent strings are drawn from the 
population according to a selection method, 
Sm, for reproduction.  The number of copies 
reproduced by an individual parent is expected 
to be directly proportional to its fitness value.  
Step 6. Crossover method, Cm, is used with 
probability Pc to recombine the two selected 
parents to get better offspring.  
Step 7. Mutation method, Mm, is applied with 
probability Pm on the offspring generated by 
the Cm. It helps to preserve a reasonable level 
of population diversity.  
Step 8. If the new population generated 
completed, go to Step#3. Else, go to Step#5. 

2. LITERATURE REVIEW
Chen et al generated a GA based

heuristic for FSP with makespan criterion, 
in which the initial population was 
generated by CDS and RA [4].  A set of 200 
problems were generated for 20 different 
combinations of job size and number of 
machines, n {7,10,15,25} and 
m {4,5,8,10,15} . According to generated 
results of trial examples, the GA default 
operators are proposed as: roulette wheel 
selection (RWS), and partially mapped 
crossover (PMX).  

Reeves [16] proposed a GA for finding the 
minimum makespan of n-job, m-machine 
permutation FSP. The initial population is 
randomly generated. The author used 
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ranking selection (RKS), in selecting parent 
1 whereas parent 2 is chosen randomly. The 
default GA parameters used were: one point 
crossover (1PX), and two point crossover 
version2 (2PXV2), and two types of 
mutation, arbitrary two-job change mutation 
(AR2JM), and shift mutation (SHM). On 
Taillard benchmarks problems, the 
performance of the algorithm is compared 
with that of a native neighborhood search 
technique and with a simulated annealing 
(SA) algorithm. 

Murata et al [12] applied a GA with an 
objective of minimizing the makespan, and 
examined two hybridizations of the GA with 
other search algorithms. As test problems, 
they randomly generated 100 FSP with 20 
jobs and 10 machines and 50 jobs and 10 
machines. The initial population is randomly 
generated. They used roulette wheel 
selection(RWS) and examined the following 
10 crossover operators: 1PX, three versions 
of two point crossover (2PXV1, 2PXV2, 
2PXV3), two version of position based 
crossover(PBXV1,PBXV1), edge 
recombination crossover (ERX), partially 
matched crossover (PMX), and cycle 
crossover (CX)and the following four 
mutation operators: adjacent two-job change 
(AD2JM), arbitrary two-job change 
mutation (AR2JM), arbitrary three-job 
change (AR3JM), and shift mutation 
(SHM). They showed that2PXV2 and SHM
are effective for this problem. Using 
simulations on the test problems, they found 
that the following specifications worked 
best (, 2PXV2, and SHM). Based on the 
default GA specification, the authors 
compared the GA with three search 
algorithms, local search (LS), tabu search 
(TS) and simulated annealing (SA).

Tang and Liu [20] proposed a GA for FSP
with the objective to minimizing mean flow 
time. Two new operations are introduced 
into the algorithm to improve the general 
GA procedure. One replaces the worst 
solutions in each generation with the best 
solutions found in previous generation. The 
other improves the most promising solution 
through local search. Their GA uses the 

following operators, RWS, PMX, SHM. To 
evaluate the performance of the proposed 
GA, Computational experiments were 
carried out on a number of randomly 
generated problem instances, 

and .
Eliter et al [8] proposed aGA -based heuristic 
for the FSP with makespan criterion. They 
used  ps-1 schedules produced by CDS
method and Dannenbring’s method to 
generate the initial population. Based on 
Chen et al, the authors used RWS, linear 
order crossover (LOX) and SHM. In order 
to examine the effectiveness of the proposed 
GA, the performance of the algorithm is 
compared over 230 generated problems 
forming 23 different combination of jobs 
and machines (n/m= 8/5, 8/10, …,35/35, 
40/40) with the NEH algorithm. 

Iyer and Saxena [11] proposed a GA for the 
permutation FSP with the objective of 
minimizing the makespan. They redesigned 
the standard GA implementation by using 
structural information from the problem. 
They considered five different problem 
dimensions, . They 
used two methods to simulate the matrices 
of processing times, one using uniform 
distributions and the other using normal 
distributions. The initial population is 
randomly generated. They used RWS, 1PX
,longest common subsequence crossover 
(LCSX),arbitrary two-job change mutation 
(AR2JM), and the following parameters 
based on Bagchi and Deb [2]. The authors 
found that the (LCSX) dominates the (1PX)
in most of the simulation runs and it 
demonstrates an ability to improve even after a 
large number of iteration, while the (1PX)
improves very slowly. 

Ruiz et al [18] proposed a hybrid genetic 
algorithm (HGA) that uses a simple form of 
local search based on the NEH heuristic. 
The objective is to minimize the makespan.
They have chosen two selection schemes, 
RKS and tournament selection (TTS) and 
one mutation method, SHM. They used 
eight crossover operators, 4 new and 4 from 
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literature, similar job order crossover 
(SJOX), Similar block order crossover" 
(SBOX), partially mapped crossover (PMX), 
order crossover (OX), one-point order 
crossover (1PX) and two-point order 
crossover version2 (2PXV2).  
Sadegheih [19] proposed a GA with the 
following characteristic: ranking selection 
(RKS), order-based crossover (OBX). 
Wang et al [22] proposed a Hybrid Genetic 
Algorithm (HGA) for permutation FSP with 
limited buffers with the objective to 
minimize the makespan. They used RWS,
four different crossover operators: linear 
order crossover LOX, PMX, 1PX, and non-
abel group based crossover (NAX) and three 
mutation operators: AR2JM, INMV1, and].
SHM . 
Octavia et al [15] discussed the application 
of HGA to solve practical FSP. The HGA
was run on the following sets of operators: 
RWS, SBOX and SHM. 
Adusumilli et al [1] proposed a GA for two 
machines FSP to minimize some of 
finishing time of arbitrary number of jobs. 
The proposed GA operators are RWS,
PMX, and AR2JM. 
Kahraman et al [9] proposed a GA for HFSP
with the objective of minimizing makespan.
They gave an evaluation of the different 
parameters and operator of the algorithms 
using the following experiment: two 
selection methods: RWS and TTS with 
probabilities (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 
0.8, 0.9, and 1.0), six crossover operators 
(PBX, OX, PMX, CX, LOX and OBX), and 
five mutation operators: (AD2JM, AR2JM,
AR3JM, SHM and INMV1). The proposed 
algorithm is tested on Carlier and Neron's 
benchmark problems. The authors found that 
the best parameters set are: RWS with 
selection probabilities (0.1, 0.2, and 0.4), 
PBXand INMV1.  
Kim and Jeong [10] proposed a flow shop 
scheduling with no-wait flexible lot 
streaming (FSS-nwFLS) using adaptive GA
to minimize the makespan. An adaptive GA
composed of three main steps. The first step 
is PBX of products. The second step is an 
iterative hill-climbing algorithm to improve 
the current generation. The last step is the 
adaptive regulation of the crossover and 

mutation rates. The proposed GA use 
randomly generated initial population,
RWS. They run 14 type of problems 
considering the number of products (5, 10, 
15, 20, 25, 30, 50), the number of sub-lots 
(15, 25, 30, 45, 50, 60, 65, 75, 90, 100, 125, 
150, 250).  The results of the proposed GA 
are compared with other two traditional 
GAs. 
Engin et al [7] proposed a GA based on a 
permutation representation of the n jobs of 
HFSP with multiprocessor task problems to 
minimize makespan. They proposed the 
following experiment: randomly generated 
initial population. Selection methods: RWS
and TS with probabilities Є

, six crossover operators: (PBX, OX, PMX,
CX, LOX and OBX), five mutation operators: 
(AD2JM, AR2JM, AR3JM,SHM and 
INMV1). The proposed approach was tested 
on a set of 240 problems. 
Verma and Dhingra [21] described 
multiprocessor task scheduling in the form of 
permutation FSP, which has an objective 
function for minimizing the makespan. They 
proposed the following GA: randomly 
generated initial population, RWS, two 
crossover operators: 2PXV2and PMX, and
INMV1. 
Chen et al [4] proposed a self-guided GA
for permutation to minimize FSP’s 
makespan. In the proposed algorithm they 
used TTS, 2PXV2, andAR2JX. They 
conducted extensive computational to 
compare the self-guided GA with several 
other algorithms using the 120 Taillard 
instances.

3. SUMMARY
A summary of different GAs operators

mentioned in the reviewed literature: 
selection methods, crossover and mutation 
operator methodsare shown in Table 1. We 
can notice that problem sizes range from n 

 [8 – 500] and m [2 – 40]. 
Based on Table 1, we count 4 selection 
methods, 17 crossover operators and 8
mutation operators used in designing different 
genetic algorithms for solving FSP as shown in 
Tables 2, 3 and 4, respectively.   
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Table 1: Summary of Genetic Algorithms Operators Used for Solving FSP 

Author(s) Year Criterion

GA operators Max
problem 
size

System 
specification

Selection
Method
(Sm)

Crossover
Method (Cm)

Mutation
Method 
(Mm)

Chen et al.

Reeves

Murata et al.

Tang and Liu

Eliter et al.

Iyer and Saxena

Ruiz et al.

Sadegheih

Wang et al.

1995

1995

1996

2002

2004

2004

2006

2006

2006

makespan

makespan

makespan

mean flow 
time

makespan

makespan

makespan

makespan

makespan

RWS

RKS
RMS

RWS

RWS

RWS

RWS

RKS
TTS*

RKS

RWS

PMX

1PX*

2PXV1

1PX
2PX(1*,2,3)
PMX(1,2)
ERX
PMX
CX

PMX

LOX

1PX
LCSX*

SJOX
SBOX*

SJ2OX
SB2OX
PMX*

OX
2PX
1PX

OBX

LOX

---

AR2JM
SHM*

AD2JM
AR2JM
AR3JM
SHM*

SHM

SHM

AR2JM

SHM

AD2JM*

INMV1
SHM

SHM

(25, 15)

(75,20)

(50.10)

(150,20)

(40,40)

(100,40)

(500,20)

(8,7)

(100,20)

Programmed using 
Fortran 77 & run on 
a SUN 4/490 
Workstation.

Programmed in
Pascal, & run on a 
Sequent S82 
Computer

---

Pentium PC 
Computer

Programmed in 
Pascal, and run on a 
Pentium IV(256
MB) Computer

Programmed in C, 
and run on PCs 
Pentium Processors

Programmed in 
(Delphi 7.0), and 
tested on Intel 
Pentium IV 
Processor running 
at 2.8 GHz with 
512 MB

Implemented in 
Turbo C++

Coded in C++ and 
run on a PC with 
AMD Athlon 1.0 
GHz CPU

Implemented in 
Microsoft Visual 
Basic 6.0

Coded in a C++ & 
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Author(s) Year Criterion

GA operators Max
problem 
size

System 
specification

Selection
Method
(Sm)

Crossover
Method (Cm)

Mutation
Method 
(Mm)

Octavia et al

Adusumilli et al.

Kahraman et al.

Kim and  Jeong

Engin et al.

Verma and 
Dhingra

Chen et al.

2007

2008

2008

2009

2011

2011

2012

makespan

makespan

makespan

makespan

makespan

makespan

makespan

RWS

RWS

RWS*

TTS

RWS

RWS*

TTS

RWS

TTS

PMX*

1PX
NAX

SBOX

PMX

PBX*

OX
PMX
CX
LOX
OBX

PBX

PBX*

OX
PMX
CX
LOX
OBX

2PX
PMX

2PX

AD2JM

AD2JM
AR2JM
AR3JM
SHM
INMV1*

---

AR2JM
AD2JM*

SHM
INMV1

INMV1

AD2JM

SHM

n=120
factory

(20,2)

(15,10)

(50,5)

(100,8)

(15,4)

(200,20)

developed at MIT 
& run under GNU 
g++ Complier

Implemented in 
Borland Delphi and 
run on a PC P4 
Processor with 3 
GHz, 512 MB

Implemented in the 
Java using an IBM 
P 1.4 GHz 
Computer with 512 
MB

Implemented in 
Borland Delphi and 
run on a PC P4 
Processor with 3 
GHz, 512 MB

Implemented using 
MATLAB at 
command line

Pentium 4 with 
3GHz Processor 
and 512 MB.

*Shows the best GA operators (Sm, Cm and Mm). 
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Next section, an experiment is designed to 
investigate the impact of these methods on the 
performance of the GA in solving FSP problem.

4. EXPERIMENTAL SET UP
A genetic algorithm is built based on the steps 
mentioned in the subsection (1.2) using C #
language (Microsoft Visual Studio 2010). The 
six selection methods mention in Table 2, the 
seventeen crossover method mention in Table 
3, and the eight mutation method mentioned in 
Table 4 are coded in the proposed GA. 

4.1 Experimental Design 
The tournament selection method is used 

with 3 different tour sizes, 2, 3 and 4. They are 
coded as TTS2, TTS3 and TTS4 respectively. 
Therefore, the number of selection methods 
became 6. And a two types of crossover operator 
methods are used first time for FSP (Maximal 
Preservative Crossover (MPX) and Alternating 
Position Crossover (APX)).Therefore, the 
number of crossover operator methods becomes 
17.And we used one types of mutation operator
methods used first time for FSP (Scramble 
mutation (SCM)).Therefore, the number of 
mutation operator methods became 8. 

Table 2: Selection Methods Used in FSP 
# Selection Methods (Sm) Codes
1 Random Selection RMS
2
3
4
5
6

Roulette Wheel Selection
Rank Selection
Tournament Selection(tour size 2)
Tournament Selection(tour size 3)
Tournament Selection(tour size 4)

RWS
RKS
TTS2
TTS3
TTS4

The full factorial experiment is as follows: 

1. Based on Tables 2, 3, and 4 we have the
following: 6 selection methods, 17 crossover 
methods and 8 mutation methods. 
2. The GA depends also on the following other
parameters: population size (Ps), crossover 
probability (Pc) and mutation probability (PM). 
We propose values for these parameters as shown 
in Table 5. Based on Table 5 we have the 
following: 4 Ps, 10 Pm, and 5 Pc. 
Therefore, the total number of combination = 6 
Sm * 17 Cm * 8Mm* 4 Ps * 5 Pc * 10 Pm = 
163200.

Table 3: Crossover operators methods used 
in FSP 

# Crossover Operator 
Methods(Cm)

Codes

1 One-Point Crossover 1PX
2 Two-Point Crossover Version1 2PXV1
3 Two-point Crossover Version2 2PXV2
4 Two-Point Crossover Version3 2PXV3
5 Position Based Crossover 

Version1
PBXV1

6 Position Based Crossover 
Version2

PBXV2

7 Linear Order Crossover LOX
8 Partially Mapped Crossover PMX
9 Longest Common Subsequence 

Crossover
LCSX

10 Order Crossover OX
11 Order Based Crossover OBX
12 Cycle Crossover CX
13
14
15
16
17

Similar Block Order Crossover
Similar Job Order Crossover
Order-Based Crossover
Maximal Preservative 
Crossover
Alternating Position Crossover

SBOX
SJOX
OBX
MPX
APX

Table 4: Mutation Operator Methods used 
in FSP 

# Mutation Operator Methods 
(Mm)

Codes

1 Adjacent Two-Job Change 
Mutation

AD2JM

2 Arbitrary Two-Job Change 
Mutation

AR2JM

3 Arbitrary Three-Job Change AR3JM
4 Shift Mutation SHM
5 Inversion Mutation Version1 INMV1
6 Inversion Mutation Version2 INMV2
7
8

Displacement Mutation
Scramble mutation

DM
SCM

4.2 Test Problem 
Every combination of the experiment is tested 

on the first Taillard problem, ta001. The problem 
consists of 20 jobs and 5 machines. The 
processing time matrix is drown from uniform 
distribution [1, 99]. The upper bound 

31



IMPACT OF GENETIC ALGORITHM OPERATORS ON ITS PERFORMANCE IN SOLVING FLOW 
SHOP SCHEDULING PROBLEMS
Nawara, Ibrahim, Elshaer, Al–rawashdeh

Table (5): Genetic algorithm Parameters 
Genetic algorithm Parameters Values

Crossover Probabilities (Pc) 0.3, 0.4, 0.5, 0.6, 0.7

Mutation Probabilities (Pm)
0.001, 0.005, 0.01, 0.02, 0.05, 0.07, 0.1, 

0.15, 0.2, 0.3

Population Size (Ps) 10 20 30 50

Max. number of generation 1000 500 333 200

of this problem is 1278 time units. The 
problem data and information can be 
downloaded from the OR Library. 

5. COMPUTATIONAL RESULTS
All computational results have been

obtained on a Core 2 Duo 2.0 GHz personal 
computer. Each combination is run 10 times. 
Then, the best, average and standard deviation 
of makespan for the 10 runs are computed.  
The performance measure used is the number 
of combinations that give the upper bound of 
the test problem (i.e. ta001) based on a specific 
operator. This measure called . Where α
{Sm,Cm,Mm},
Sm={RMS,RKS,RWS,TTS2,TTS3 and TTS4}, 
Cm={1PX, 2PXV1, 2PXV2, 2PXV3, PBXV1, 
PBXV2, LOX, PMX, LCSX, OX, OBX, CX, 
ER, MPX, SJOX, SBOX, APX}, and 
Mm={AD2JM, AR2JM, AR3JM, SHM, 
INMV1, INMV2, DM, SCM}. 
The computational results show that 9041 out 
of 163200 combinations give the upper bound 
value and the remainders are worse than the 
upper bound. 
In the following subsections, the impact of the 
three GA operators will be investigated based
on   Nα = 9041 and tested using chi square test.

5.1 Impact of The Selection Methods (Sm) 

Fig.1 shows the distribution of the 9041 
combinations on the selection methods. 
Applying the chi square test gives P-value 
equals 0.0000 which means significant 
differences among the selection methods.  This 
is clear as shown in Fig. 1 that the tournament 
selection with tour size=4 (i.e. TTS4) gave 

best results than other selection methods, then 
(TTS3, TTS2, and RKS) respectively, and we 
see that the RMS and RWS gave worst 
results. This finding actually is surprising 
where the tournament method have not been 
paid attention from the researchers as shown in 
Table 1. Moreover, amazing finding is that the 
random selection method gets better results 
than the roulette wheel selection. 

5.2 Impact of Crossover Operator 
Methods (Cm) 

Fig. 2 shows the distribution of the 9041 
combinations on the crossover operator 
methods. Applying the chi square test give P-
value equals 1.4059E-226which means 
significant differences among the crossover 
operator methods.  This is clear as shown in 
Fig. 2 that the crossover operator  methods 
(2PXV3) gave best results than other crossover 
operator methods, then , (1PX, SBOX, 
2PXV1, OBX, SJOX, PBXV1, PBXV2, APX, 
LOX, 2PXV2, LCSX and PMX) respectively. 
From the fig. we observe that the crossover 
operator methods (ERX, MPX, OX and CX) 
gave worst results. 

5.3 Impact of Mutation Operator 
Methods (Mm) 

The distribution of the 9041 combinations 
on the mutation operator methods is shown in 
Fig. 3. Applying the chi square test give P-
value equals 0.0000 which means significant 
differences among the mutation operator 
methods.  This is clear as shown in Fig. 4 that 
the adjacent two-job change mutation
(AD2JM) gave best results than other 
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Fig. 1: Number of combinations obtained upper bound based on selection method 

Fig. 2: Number of combinations obtained upper bound based on crossover method 

Fig. 3: Number of combinations obtained upper bound based on mutation method
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crossover operator methods, then shift mutation
(SHM). And we see that the other mutation 
operator methods gave worst results.  

6. CONCLUSIONS

In this study we investigate the impact of the 
GA operators (selection methods, Crossover 
operator methods and Mutation operator 
methods) on the performance of GA in solution 
of FSP, we find the following GA operators: 4 
selection methods shown in Table 2, 17 crossover 
operators shown in Table 3 
and 8 mutation operators shown in Table4 used in 
designing different genetic algorithms for solving 
FSP. Full factorial experiment is designed and 
tested on known benchmark problem. The 
extensive computational results show that: 

Tournament selection method with three tour
sizes (TTS2, TTS3 and TTS4) give best results 
from all the selection methods. This finding 
actually is surprised us where the tournament 
method almost have not been paid attention from 
the researchers as shown in Table 1. In addition, 
though in most of the previous research papers 
roulette wheel selection (RWS) was used widely, 
we found its performance is worse than the 
random selection.  

Two-point crossover version 
3(2PXV3)gives better results than all other 
crossover methods. Also, many crossover 
methods show almost the same high 
performance like 1PX, 2PXV1, OBX and 
SBOX. Moreover, four methods, CX, EPX, 
MPX, and OX, should be avoided when 
designing GA because of its bad performance 
results.

Adjacent two-job change mutation (AD2JM)
gives the best results from all the mutation 
methods. The shift mutation (SHM) is considered 
the second best so we note that it is used in most 
of the previous research papers It is clear that 
FSP problem still needs a further work such as a 
comparative study for all the above mentioned 
GA operators and parameters to see their impact 
on the quality of the problem solution. So, we 
recommend the researchers to build up based on 
our findings.  
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