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This study presents a novel continuous sliding mode control (SMC) law for robotic 

arms, emphasizing computational efficiency, structural simplicity, and stability. The 

proposed controller, which does not require the robot's dynamic model in its 

structure, ensures Global Uniform Ultimate Bounded (GUUB) stability, focusing on 

minimizing joint tracking errors. To enhance tracking performance, the control law 

incorporates a nonlinear function that increases control effort only within the 

boundary layer, effectively reducing the ultimate bounds of tracking errors. Stability 

is demonstrated using Lyapunov theory, confirming the asymptotic convergence of 

tracking errors to near zero. Further improvement is achieved by replacing the 

original sliding surface with a proportional-integral (PI) sliding surface. This PI-

based sliding mode controller maintains GUUB stability while delivering superior 

tracking accuracy, as evidenced by near-zero ultimate bounds of tracking errors. 

Simulation results with a two degrees of freedom manipulator validate the 

controllers' effectiveness in handling disturbances, with the enhanced PI-based 

controller showing superior performance, nearly eliminating tracking errors.  
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1. Introduction 

   Achieving precise, dexterous motion in industrial 

robot manipulators requires controllers that are robust 

against external disturbances, unknown payloads, and 

modelling inaccuracies. Sliding Mode Control (SMC) 

has emerged as a leading method to address these 

challenges due to its ability to maintain system 

performance despite disturbances once the system 

reaches the sliding mode [1-7]. This is possible 

because SMC introduces dynamic invariance, making 

it resilient to disturbances. However, SMC assumes 

that input control signals can switch instantaneously 
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between different values, which is unattainable in real 

systems. Physical limitations of actuators and finite 

computational time delays prevent this instantaneous 

switching, resulting in a phenomenon known as 

chattering (high frequency oscillations around the 

desired equilibrium state) [8-9]. Chattering can excite 

the unmodeled high-frequency dynamics, degrading 

the performance of systems. 

   A common method to remove chattering involves 

introducing a boundary layer around the sliding 

manifold, where a continuous control signal replaces 

the discontinuous one once the system’s trajectories 

enter this layer [10]. While effective in removing 
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chattering, this approach of control causes bounded 

steady-state tracking errors and compromises the 

system’s robustness, which becomes dependent on the 

width of the boundary layer area. 

   To address these limitations, various adaptive 

methods have been proposed. For instance, adjusting 

the width of the boundary layer zone according to the 

degree of system uncertainty [11] or using higher-

order sliding modes [12] can remove chattering while 

maintaining tracking accuracy. However, these 

methods often rely on higher-order derivatives of 

system states, which may be unmeasurable in practical 

systems. Other approaches include the use of a low-

pass filter between the controller and the plant [13], 

parameter estimation techniques [14], adaptive control 

schemes [15-17] and improved reaching laws and 

sliding surfaces [18]. In addition to the latter methods, 

continuous sliding mode control of robotic 

manipulators based on time-varying disturbance 

estimation and compensation is used to address the 

high-precision trajectory tracking task of uncertain 

robot arms [19]. These methods, while effective, 

always introduce increased complexity and require 

knowledge of the robot's dynamics, which limits their 

applicability. 

   In response to these challenges, this work introduces 

a novel sliding mode controller (SMC) for rigid robot 

manipulators that offers a simplified structure without 

compromising high tracking performance. By 

leveraging its streamlined design, the proposed control 

law enhances robustness, simplicity, and 

computational efficiency compared to advanced 

controllers, such as traditional sliding mode 

controllers or adaptive controllers, which typically 

depend on detailed dynamic models for their 

implementation. 

A key innovation of this controller is the incorporation 

of a new method to improve control performance 

within the boundary layer. Unlike conventional 

approaches, this method does not require explicit 

knowledge of the robot’s dynamic model, thereby 

reducing complexity and mitigating modeling errors. 

Furthermore, the controller addresses the chattering 

phenomenon commonly associated with sliding mode 

control by ensuring smoother control actions while 

maintaining robust disturbance rejection and 

trajectory tracking capabilities. 

This generalizable framework extends beyond robotic 

manipulators and can be adapted to various sliding 

mode control applications. Its ability to achieve high-

precision trajectory tracking under model 

uncertainties and external disturbances makes it a 

robust and efficient solution for complex and dynamic 

systems requiring precise control. 

   Throughout this research article, bold uppercase 

letters denote matrices, while vectors are represented 

by symbols or as defined in the text. The smallest and 

largest eigenvalues of a symmetric, positive definite, 

bounded matrix 𝐐(Ω) are represented by 𝜆𝑚{𝐐(Ω)} 

and 𝜆𝑀{𝐐(Ω)}, respectively, for all Ω ∈ ℝ𝑛. The 

Euclidean norm of any real vector Ω is indicated by 

‖Ω‖, real numbers are denoted by ℝ, and the identity 

matrix is represented by 𝐈 ∈ ℝ𝑛×𝑛. 

2. Robot Dynamics and Their Key Properties 

   If disturbances are considered, the dynamic model of 

any 𝑛-link rigid arm with revolute joints is defined by 

[20]: 

            𝐇(Θ)Θ̈ + 𝐂(Θ, Θ̇)Θ̇ + χ(Θ) + τd = τ         (1) 

 

where:  

 Θ ∈ ℝ𝑛 is the vector of joint positions, 

 𝐇(Θ) ∈ ℝ𝑛×𝑛 is the matrix of inertia which 

is symmetric and positive definite, 

 𝐂(Θ, Θ̇)Θ̇ ∈ ℝ𝑛 represents the centrifugal 

and Coriolis force vector, 

 χ(Θ) ∈ ℝ𝑛 is the gravitational force vector, 

 τ ∈ ℝ𝑛 is the vector of input torque, and 

 τd ∈ ℝ𝑛 represents the vector of external 

disturbances, assumed to be bounded by 
‖τd‖ ≤ 𝑑, where 𝑑 is a positive constant 

[20][21]. 

This dynamic model possesses the following key 

properties [20] [22][23]:    

P1. The matrix of inertia is a symmetric positive 

definite bounded matrix. 

               𝜆𝑚{𝐇}‖Θ̇‖
2

≤ Θ̇T𝐇(Θ)Θ̇ ≤ 𝜆𝑀{𝐇}‖Θ̇‖
2
 

 

P2. There is a bounded positive constant 𝑘𝑐 that 

satisfies the following inequality: 

         ‖𝐂(z, x)y‖ ≤ 𝑘𝑐‖x‖‖y‖ ∀ x, y, z ∈ ℝ𝑛 

 

P3. The matrix 𝐂(⋅)  satisfies commutativity. 

𝐂(z, x)y = 𝐂(z, y)x     ∀ x, y, z ∈ ℝ𝑛   

   

P4. The matrix (𝐇̇(Θ) − 2𝐂(Θ, Θ̇)Θ̇) is skew-

symmetric. This implies: 

           xT{𝐇̇(Θ) − 2𝐂(Θ, Θ̇)Θ̇} x = 0   ∀ x ∈ ℝ𝑛 

 

𝐇̇(Θ) = 𝐂(Θ, Θ̇) + {𝐂(Θ, Θ̇)}
T
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P5. There is a bounded positive constant 𝑘𝑣 that 

satisfies: 

             ‖χ(Θ)‖ ≤ 𝑘𝑣       ∀ Θ ∈ ℝ𝑛 

3. Preliminary Framework for Controller Design 

   As an initial step, the proposed continuous sliding 

mode control law and the associated sliding surface, 

denoted by Γ ∈ ℝ𝑛, are defined as follows:  

           

                         τ =   (𝛼‖Γ‖ + 𝛾) Sat(Γ)                (2)   

 

                          Γ =  Θ̇̃ + 𝜆 Tanh(Θ̃)                      (3) 

 

Here, Θ̃ = Θd − Θ, represents the position error 

vector, where Θd  ∈ ℝ𝑛 is the desired position vector. 

Additionally, for any z ∈ ℝ𝑛, Tanh(z) and Sat(z) are 

vector functions of dimension 𝑛, with elements 

tanh(𝑧𝑖) and sat(𝑧𝑖), respectively. The parameters 

𝛼, 𝛾, 𝜆 ∈ ℝ are positive constant gains. For all z ∈
ℝ𝑛, the Sat(z) vector function is defined as: 

 

           Sat(z) = {
δ−1 z           if  ‖z‖ ≤ 𝛿
Sgn(z)        otherwise 

                (4) 

 

Here, Sgn(⋅) is the signinum vector function, and 𝛿 is 

a small constant (𝛿 < 1) that defines the well-known 

boundary layer thickness. The Tanh(⋅) vector function 

satisfies [24]:   

 

tanh(‖z‖) ≤ ‖Tanh(z)‖ ≤ {
‖ z ‖    ∀  z ∈ ℝ𝑛 

√𝑛      ∀  z ∈ ℝ𝑛  
      (5) 

 

The objective of the above control law is to make the 

tracking variable Γ reaches zero as quickly as possible.  

Once this occurs, the differential equation (D.E.) 

defining Γ reduces to a homogeneous (unforced) 

differential equation, where its left-hand side equals 

zero. Since this equation is stable, the tracking error Θ̃ 

asymptotically approaches zero. To demonstrate this, 

consider the Lyapunov function:  𝑉 = 0.5 Θ̃TΘ̃. The 

time derivative of this Lyapunov function candidate 

along the trajectories of the system defined by Γ = 0 is 

given by: 𝑉̇ = −𝜆 Θ̃T Tanh(Θ̃). The structures of 𝑉 

and 𝑉̇ confirm the asymptotic convergence of Θ̃ to 

zero. 

 

3.1 Stability analysis of the preliminary controller 

   Consider the following Lyapunov function: 

 

                        𝑉1  =  0.5 ΓT𝐇(Θ)Γ                         (6) 

 

Using property P1, we obtain: 

 

       0.5 𝜆𝑚{𝐇} ‖Γ‖2  ≤ 𝑉1 ≤ 0.5 𝜆𝑀{𝐇} ‖Γ‖2      (7) 

                 

The time derivative of the function 𝑉1 along the 

trajectories of the system defined by Eqs. (1) and (2) 

is given by:  

 

𝑉̇1 =
1

2
ΓT𝐇̇(Θ)Γ + ΓT {𝐂(Θ, Θ̇)Θ̇ +  χ(Θ) −  τ

+ 𝐇(Θ)Θ̈d + 𝐇(Θ) 𝐀(Θ̃)Θ̇̃ + τd} 

     (8) 

 

Here, 𝐀(Θ̃) ≤ 𝐈  ∀ Θ̃ ∈ ℝ𝑛 is a diagonal matrix 

defined by 𝐀𝑖𝑖 = (sech(θ̃𝑖))
2

∀𝑖 = 1: 𝑛.  

 

By using property P3 along with the definition of Γ, 

we obtain: 

 

𝐂(Θ, Θ̇)Θ̇ = −𝐂(Θ, Θ̇)Γ − 𝐂(Θ, υ)Γ + 𝐂(Θ, υ)υ     (9) 

 

  𝐇(Θ)𝐀(Θ̃)Θ̇̃ = 𝐇(Θ)𝐀(Θ̃){Γ − 𝜆 Tanh(Θ̃)}      (10) 

 

where, υ = Θ̇𝑑 + 𝜆 Tanh(Θ̃). 

 

Based on the controller defined in Eq. (2), the stability 

analysis of the robot manipulator proceeds as follows: 

 

   Case 1.  ‖Γ‖ >  δ: In this case, Eq. (8) becomes: 

 

𝑉̇1 = 0.5 ΓT𝐇̇(Θ)Γ + ΓT {𝐂(Θ, Θ̇)Θ̇ + χ(Θ) + τd −

𝛼 Γ − 𝛾 Sgn(Γ) + 𝐇(Θ)Θ̈d + 𝐇(Θ) 𝐀(Θ̃)Θ̇̃}  

 

By using Eqs. (9), (10) and property P4, 𝑉̇1 is reduced 

to: 

 

𝑉̇1 = −ΓT{𝛼 − 𝐂(Θ, υ) − 𝐇(Θ)𝐀(Θ̃)}Γ −

                  ΓT{𝛾 Sgn(Γ) − 𝐂(Θ, υ)υ − 𝐇(Θ)Θ̈d −

                        𝜆 𝐇(Θ)𝐀(Θ̃)Tanh(Θ̃) − χ(Θ) − τd}  

 

Using properties P1, P2, P5 and Eq. (5), 𝑉̇1  becomes: 

 

𝑉̇1 ≤ − {𝛼 − 𝑘𝑐  (‖Θ̇d‖ +  𝜆√𝑛 ) − 𝜆𝑀{𝐇} }‖Γ‖2 −

              {𝛾 − 𝑘𝑐 (‖Θ̇d‖ +  𝜆√𝑛)
2

− 𝜆𝑀{𝐇}‖Θ̈d‖  −

                                             𝜆 𝜆𝑀{𝐇}√𝑛 − 𝑘𝑣 − 𝑑} ‖Γ‖  

 

Define the following constants: 
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        𝜁1 = sup
t

(‖Θ̇d‖),    𝜁2 = sup
t

(‖Θ̈d‖)            (11) 

                                

 𝜌 = 𝑘𝑐(𝜁1 + √𝑛𝜆)
2

+ 𝜆𝑀{𝐇}(𝜆√𝑛 + 𝜁2) + 𝑘𝑣 + 𝑑     

(12) 

Then, we have: 

 

𝑉̇1 ≤ −{𝛼 − 𝑘𝑐(𝜆√𝑛 + 𝜁1) − 𝜆𝑀{𝐇}}‖Γ‖2 −

                                                          {𝛾 − 𝜌}‖Γ‖        (13) 

 

Assumption 1: The gain 𝛾 is assumed to satisfy: 

 

  𝛾 > 𝑚𝑎𝑥{[𝛿𝑘𝑐(𝜆√𝑛 + 𝜁1) + 𝛿𝜆𝑀{𝐇}], [𝜌]}      (14) 

                           

Assumption 2: The gain 𝛼 is assumed to satisfy: 

 

                  𝛼 > 𝑘𝑐(𝜆√𝑛 + 𝜁1) + 𝜆𝑀{𝐇}               (15)                                      

 

Then, by using Assumptions 1, 2 and Eq. (7), 𝑉̇1 (Eq. 

(13)) is negative definite and can be further reduced 

to: 

       𝑉̇1 ≤ −{𝛾 − 𝜌}‖Γ‖ ≤ − (
𝛾−𝜌

√0.5 𝜆𝑀{𝐇}
) 𝑉1

1/2
      (16) 

 

From Eq. (16), it can be concluded that Γ approaches 

the boundary of the set defined by ‖Γ‖ ≤ 𝛿 (the 

boundary layer) in finite time. This result is well-

established in sliding mode control theory. 

 

   Case 2. ‖Γ‖  ≤ 𝛿: In this case Eq. (8) becomes: 

 

𝑉̇1 =
1

2
ΓT𝐇̇(Θ)Γ + ΓT {𝐂(Θ, Θ̇)Θ̇ + χ(Θ) −

            𝛾𝛿−1Γ −   𝛼 𝛿−1‖Γ‖Γ + 𝐇(Θ)Θ̈d +

                                            𝐇(Θ) 𝐀(Θ̃)Θ̇̃  + τd}       (17) 

 

By using Eqs. (9), (10) and property P4, 𝑉̇1 becomes: 

 

𝑉̇1 = −ΓT{𝛾𝛿−1 − 𝐂(Θ, υ) − 𝐇(Θ)𝐀(Θ̃)}Γ −

              𝛼𝛿−1‖Γ‖ΓTΓ + ΓT{𝐂(Θ, υ)υ + 𝐇(Θ)Θ̈d −

                            𝜆 𝐇(Θ)𝐀(Θ̃) Tanh(Θ̃) + χ(Θ) + τd}  

 (18) 

By using P1, P2, P5 and Eq. (5), equation (18) can be 

simplified to: 

 

           𝑉̇1 ≤ −𝜅 ‖Γ‖2 − 𝛼𝛿−1‖Γ‖3 + 𝜌‖Γ‖ 

        

        ≤ −(𝛼𝛿−1‖Γ‖3 + 𝜉𝜅‖Γ‖2 − 𝜌‖Γ‖) −
                                           (1 − 𝜉)𝜅‖Γ‖2                  (19)       

 

where 0 < 𝜉 < 1  and 𝜅 is defined by: 

            𝜅 = 𝛾𝛿−1 − 𝑘𝑐(𝜆√𝑛 + 𝜁1) − 𝜆𝑀{𝐇}        (20) 

 

Note: By multiplying both sides of Eq. (14), which 

defines Assumption 1, by 𝛿−1 > 0, we conclude that: 

𝛾𝛿−1 > 𝑚𝑎𝑥{[𝑘𝑐(𝜆√𝑛 + 𝜁1) + 𝜆𝑀{𝐇}], [𝛿−1𝜌]} 

Therefore, from Eq. (20), we verify that 𝜅 > 0. 
 

   In the present case, the stability of the variable Γ can 

be determined from Eq. (19). Specifically, if ‖Γ‖ ≥ μ, 

where: 

                                𝜇 = 𝜌 𝜉−1𝜅−1                        (21) 

 

then the first term in Eq. (19) will always be less than 

or equal to zero, and consequently, we can rewrite 𝑉̇1 

as follows: 

            𝑉̇1 ≤ −(1 − 𝜉)𝜅‖Γ‖2 ∀ ‖Γ‖ ≥ 𝜇           (22) 

 

Note: Eq. (21) is derived by manipulating the first term 

in Eq. (19), specifically by considering the inequality  

(𝛼𝛿−1‖Γ‖3 + 𝜉 𝜅 ‖Γ‖2 − 𝜌‖Γ‖ ≥ 0) along with the 

condition that ‖Γ‖ ≤ 𝛿 with 𝛿 < 1 as defined earlier. 

 

The structures of Eqs. (6) and (22) permit the 

application of Theorem 4.18 from [25] (see Appendix 

A). Consequently, we conclude that the closed-loop 

dynamic system, as defined by Eqs. (1) and (2), is 

globally uniformly ultimately bounded (GUUB) 

stable. Therefore, we have  ‖Γ‖ ≤ 𝑠̅, where the 

ultimate bound 𝑠̅ is given by: 

 

                                𝑠̅ = 𝜇√
𝜆𝑀{𝐇}

𝜆𝑚{𝐇}
                          (23) 

 

The stability result given above indicates that the 

filtered tracking variable, Γ, is GUUB stable. 

However, we are particularly concerned with the 

responses of the position and the velocity tracking 

errors. From Eq. (3), we can determine the upper 

bound of Θ̃. To find this bound, we proceed as follows:             

Consider the following Lyapunov function: 

 

                                   𝑉2 =
1

2
Θ̃TΘ̃                         (24) 

 

The time derivative of 𝑉2 along the trajectories of the 

dynamic system defined by Eq. (3) is given by: 

 

𝑉̇2 = Θ̃T(−𝜆 Tanh(Θ̃) + Γ) 

      ≤ −𝜆 ‖Θ̃‖‖ Tanh(Θ̃)‖ + 𝑠̅ ‖Θ̃‖      

                                       

≤ −(1 − 𝜉) 𝜆 ‖Θ̃‖‖ Tanh(Θ̃)‖   

+ ‖Θ̃‖(𝑠̅ − 𝜉 𝜆 ‖ Tanh(Θ̃)‖) 

       (25) 

From the last equation, we can conclude that if: 
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                              ‖Θ̃‖  ≥ 𝑠̅ 𝜆−1𝜉−1                      (26) 

 

then the second term in Eq. (25) will always be less 

than or equal to zero. Consequently, 𝑉̇2 is negative 

definite, and can be rewritten as follows: 

 

𝑉̇2 ≤ −(1 − 𝜉)𝜆‖Θ̃‖‖ Tanh(Θ̃)‖  ∀ ‖Θ̃‖ ≥ 𝑠̅ 𝜆−1𝜉−1 

(27) 

 

Note: Eq. (26) is derived by manipulating the second 

term in Eq. (25), specifically by considering the 

inequality (s̅ − ξ λ ‖ Tanh(Θ̃)‖ ≤ 0) along with the 

fact that ‖ Tanh(Θ̃)‖ ≤ ‖Θ̃‖. 

 

The structures of Eqs. (24) and (27) allow the 

application of Theorem 4.18 in [25] to conclude the 

GUUB stability of the system defined by Eq. (3). In 

addition, we have ‖Θ̃‖ ≤ 𝑒̅. The ultimate bound of the 

position tracking error 𝑒̅ is calculated as: 

 

               𝑒̅ = √
0.5(𝜆−1𝜉−1𝑠̅)2

0.5
=

𝜇

𝜆𝜉
 √

𝜆𝑀{𝐇}

𝜆𝑚{𝐇}
                  (28) 

 

From Eq. (3), the upper bound of the velocity tracking 

error Θ̇̃ is given by: 

 

           ‖Θ̇̃‖ ≤ ‖Γ‖ ≤ 𝑠̅ = 𝜇 √
𝜆𝑀{𝐇}

𝜆𝑚{𝐇}
 ≜ 𝑏̅             (29) 

    

   From Eqs. (28) and (29), we observe that the 

ultimate bounds of both the position and velocity 

tracking errors can be minimized by reducing 𝜇. As 

shown in Eq. (21), 𝜇 can be decreased arbitrarily by 

increasing 𝜅, which, according to Eq. (20), can be 

achieved by increasing 𝛾 while reducing 𝛿. However, 

there are limitations to decreasing 𝛿 due to the risk of 

chattering. Similarly, excessively increasing in 𝛾 may 

result in high control activity, potentially causing 

actuator saturation since 𝛾 is active both inside and 

outside the boundary layer.  

   To improve controller performance, the following 

section presents a new method for reducing the 

ultimate bounds of the tracking variables, while 

accounting for the restrictions on the values of 𝛾 and 

the boundary layer width 𝛿. 

4. A Framework for Enhancing Controller 

Performance 

   Before introducing the enhanced controller, it is 

important to clarify that the restriction on increasing 

the gain γ, as indicated at the end of the previous 

section, applies only outside the boundary layer, where 

the signum vector function is active. However, inside 

the boundary layer, this vector function is replaced 

with 𝛿−1Γ, where the value of the tracking variable Γ 

is very small (‖Γ‖  ≤ 𝛿). Given this, we can increase 

the gain γ only within the boundary layer as needed to 

reduce the various tracking bounds. To achieve this, 

we introduce the following nonnegative real-valued 

function: 

 

         𝜓(Ω) = {
𝛽 − 𝛾    ∀ ‖Ω‖  ≤ 𝛿, Ω ∈ ℝ𝑛  

0                   otherwise
     (30) 

 

Note: Here, the gain 𝛽 is a large positive constant, 

significantly greater than 𝛾 (𝛽 ≫ 𝛾 ). 

 

The enhanced controller is now defined by: 

 

        τ =   (𝛼‖Γ‖ + 𝜓(Γ) + 𝛾) Sat(Γ) ≜ τn         (31) 

 

Note: The sliding surface Γ remain unchanged and is 

still governed by Eq. (3). 

4.1. Performance and stability analysis of the 

enhanced control strategy 

   To analyse the stability of the enhanced control law, 

we use the same Lyapunov function as in Eq. (6). 

Now, we consider two cases: 

 

   Case I. ‖Γ‖ >  𝛿: In this case, Eq. (31) simplifies to 

the same structure as Eq. (2) outside the boundary 

layer. Therefore, the same conclusion derived from 

Eq. (16) holds. 

 

   Case II. ‖Γ‖ ≤ 𝛿: Here, Eq. (31) simplifies to:    

 
                          τn = (𝛼‖Γ‖ + 𝛽)𝛿−1Γ                (32) 

 

Using this modified control law, Eq. (19) transforms 

into the following format: 

 

𝑉̇1 ≤ −(𝛼𝛿−1‖Γ‖3 + 𝜉𝜅𝑛‖Γ‖2 − 𝜌‖Γ‖)
− (1 − 𝜉)𝜅𝑛‖Γ‖2 

(33) 

where 𝜅𝑛 is the new value of 𝜅, which is defined as: 

  

       𝜅𝑛 = 𝛽𝛿−1 − 𝑘𝑐(𝜆√𝑛 + 𝜁1) − 𝜆𝑀{𝐇}          (34) 

 

Note: By comparing Eq. (20) with Eq. (34) and noting 

that 𝛽 ≫ 𝛾, we conclude that 𝜅𝑛 ≫  𝜅. 

 

   The impact of the enhanced control strategy 

becomes evident when comparing 𝜅𝑛 with 𝜅. The new 

gain adjustment in Eq. (33) results in the following 

new value of μ:  
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                                 𝜇𝑛 = 𝜌 𝜉−1𝜅𝑛
−1                     (35) 

 

According to this equation, large values of 𝜅𝑛 cause 

the new ultimate bound 𝜇𝑛 to approach nearly zero. By 

comparing Eq. (21) and Eq. (35), and since 𝜅𝑛 ≫  𝜅, 

we have 𝜇𝑛 ≪  𝜇. This means that the ultimate bound 

of the tracking variable Γ is greatly reduced, as 

expected, by using the enhanced control law defined 

by Eq. (31).       

   Following the same analysis as in the previous 

section, we obtain the following new ultimate bounds: 

 

                       ‖Γ‖ ≤ 𝜇𝑛  √
𝜆𝑀{𝐇}

𝜆𝑚{𝐇}
≜ 𝑠̅𝑛                   (36) 

 

                       ‖Θ̃‖ ≤
𝜇𝑛

𝜆𝜉
√

𝜆𝑀{𝐇}

𝜆𝑚{𝐇}
≜ 𝑒̅𝑛                   (37) 

 

                      ‖Θ̇̃‖ ≤ 𝜇𝑛√
𝜆𝑀{𝐇}

𝜆𝑚{𝐇}
≜ 𝑏̅𝑛                   (38) 

 

The presence of 𝜇𝑛 in place of 𝜇 in the above bounds 

demonstrates that the controller's performance has 

been significantly improved. This is true because 𝜇𝑛 is 

considerably smaller—nearly zero—indicating a 

substantial enhancement in control precision. 

5. Enhanced Controller Design Using a Nonlinear 

PI Sliding Surface 

   In this section, the performance of the enhanced 

controller (Eq. (31)) is further improved by 

introducing a novel nonlinear proportional-integral 

(PI) sliding surface. The integral term provides the 

advantage of eliminating steady-state tracking error. 

The newly proposed sliding surface σ is defined as 

follows: 

                           σ = Γ + 𝜂 Tanh(ϑ)                    (39) 

 

                          ϑ̇ = Tanh(Γ δ1
−1)                        (40) 

 

where 𝜂 > 0 is a constant gain, and 𝛿1 < 1 is a small 

constant. 

 

   On the sliding mode (σ = 0), the system dynamics 

defined by Eqs. (39) and (40) become: 

                     Γ = −𝜂 Tanh(ϑ)                               (41) 

 

                    ϑ̇ = −Tanh(𝛿1
−1𝜂 Tanh(ϑ))            (42) 

 

By pre-multiplying both sides of the last equation by 

ϑT, we can demonstrate that Eq. (42) represents a 

globally asymptotically stable differential equation. 

Consequently, ϑ → 0 as t → ∞. From Eq. (41), it then 

follows that Γ → 0 as t → ∞. Given the definition of 

Γ, we conclude that Θ̃ → 0 as t → ∞.  

   The enhanced controller with the PI sliding surface 

now takes the following form:  

 

         τ = (𝛼̂‖σ‖ + 𝜓̂(σ) + 𝛾) Sat(σ) ≜ τ̂n         (43) 

 

where,   

  

        𝜓̂(σ) = {𝛽̂ − 𝛾      ∀ ‖σ‖  ≤ 𝛿, σ ∈ ℝ𝑛  
0                    otherwise

       (44) 

 

Here, 𝛼̂, 𝛽̂, and 𝛾 are the new values of the gains 𝛼, 𝛽, 

and 𝛾, with the assumption that 𝛽̂ ≫ 𝛾. 

 

Note: While the thickness of the boundary layer of the 

new sliding manifold σ can be chosen arbitrarily, it 

has been selected as 𝛿. This choice does not result in 

any loss of generality. 

5.1. Stability analysis and performance evaluation of 

the enhanced controller design with the nonlinear PI 

sliding surface 

   The stability analysis of the new dynamic system, as 

described by Eqs. (1) and (43), is performed by 

considering the following Lyapunov function: 

 

                        𝑉3(σ) =
1

2
 σT𝐇(Θ)σ                     (45) 

 

Using property P1, we have: 

 

          
1

2
𝜆𝑚{𝐇}‖σ‖2 ≤ 𝑉3(σ) ≤

1

2
𝜆𝑀{𝐇}‖σ‖2     (46) 

 

The time-derivative of 𝑉3 along the trajectories of the 

dynamic system defined by Eqs. (1) and (43) is given 

by: 

 

𝑉̇3 =
1

2
 σT𝐇̇(Θ)σ + σT {𝐂(Θ, Θ̇)Θ̇ + χ(Θ) − τ̂n + τd

+ 𝐇(Θ)Θ̈d + 𝜆 𝐇(Θ)𝐀(Θ̃)Θ̇̃

+ 𝜂 𝐇(Θ)𝐀(ϑ) Tanh(Γ 𝛿1
−1)} 

                                    (47) 

Using P3, P4, Eq. (3) and Eq. (39), we obtain: 

𝑉̇3 = σT{𝐂(Θ, υ1)υ1 − 𝐂(Θ, υ1)σ + χ(Θ) − τ̂n + τd

+ 𝐇(Θ)Θ̈d + 𝜆 𝐇(Θ)𝐀(Θ̃)σ

− 𝜂 𝜆 𝐇(Θ)𝐀(Θ̃) Tanh(ϑ)

−  𝜆2 𝐇(Θ)𝐀(Θ̃)Tanh(Θ̃)

+ 𝜂 𝐇(Θ)𝐀(ϑ)Tanh(Γ 𝛿1
−1)} 

          (48) 
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where υ1 = υ + 𝜂 Tanh(ϑ). 

 

By employing P1, P2, P5 and Eq. (5), 𝑉̇3 is upper 

bounded as follows: 

 

               𝑉̇3 ≤ −σTτ̂n + 𝜚1‖σ‖2 + 𝜚2‖σ‖            (49) 

 

where 𝜚1 and 𝜚2 are defined by: 

 

        𝜚1 = 𝑘𝑐[𝜁1 + √𝑛(𝜆 + 𝜂)] + 𝜆 𝜆𝑀{𝐇}           (50) 

 

𝜚2 = 𝑘𝑐[𝜁1 + √𝑛(𝜆 + 𝜂)]
2

+ 𝑘𝑣 + 𝜆𝑀{𝐇}𝜁2 + 𝑑

+ 𝜆𝑀{𝐇}(𝜂 + 𝜂𝜆 + 𝜆2)√𝑛 

(51) 

 

Assumption 3:  It is assumed that: 

 

         𝛼̂ > 𝜚1      and     𝛾 > 𝑚𝑎𝑥{ 𝛿𝜚1, 𝜚2}            (52) 

 

Now, the stability of the current system will be 

analysed as follows: 

 

 ‖σ‖ >  𝛿: In this case, Eq. (49) takes the 

following form: 

𝑉̇3 ≤ −(𝛼̂ − 𝜚1)‖σ‖2 − (𝛾 − 𝜚2)‖σ‖ 

 

By Assumption 3, 𝑉̇3 is negative definite. 

Furthermore, using Eq. (46), it can be further reduced 

as follows: 

 

  𝑉̇3 ≤ −(𝛾 − 𝜚2)‖σ‖ ≤ − (
𝛾̂−𝜚2

√0.5𝜆𝑀{𝐇}
) {𝑉3}1/2     (53) 

 

From Eq. (53), it can be concluded that σ approach the 

boundary layer in finite time. 

 

 ‖σ‖ ≤  𝛿: In this case, Eq. (49) becomes: 

 

       𝑉̇3 ≤ −𝛼̂𝛿−1‖𝜎‖3 − 𝜅̂𝑛‖σ‖2 + 𝜚2‖σ‖ 

 

     ≤ −(𝛼̂𝛿−1‖σ‖3 + 𝜉𝜅̂𝑛‖σ‖2 − ϱ2‖σ‖) −
                                               (1 − 𝜉)𝜅̂𝑛‖σ‖2             (54) 

 

where, 

                            𝜅̂𝑛 = 𝛽̂𝛿−1 − 𝜚1                        (55) 

From Assumption 3, 𝛿 is small, and since 𝛽̂ ≫ 𝛾, it 

follows that 𝜅̂𝑛 > 0. Moreover, since 𝛽̂ is already very 

large, it follows that 𝜅̂𝑛 ≫ 0. On the other hand, the 

structure of Eq. (54) is similar to Eq. (33), and 

therefore the new value of 𝜇𝑛 is given by: 

 

                             𝜇̂𝑛 = 𝜚2 𝜉−1𝜅̂𝑛
−1                        (56) 

 

This equation resembles Eq. (35), and we can 

conclude that 𝜇̂𝑛 is very small (nearly zero) due to the 

large values of 𝜅̂𝑛. Likewise, as in Eq. (36), we have: 

 

                              ‖σ‖ ≤ 𝜇̂𝑛√
𝜆𝑀{𝐇}

𝜆𝑚{𝐇}
≜ 𝑟              (57) 

 

Remark: Given 𝜇̂n ≈ 0, we can infer that the ultimate 

bound (𝑟) is approximately 0. 

 

Now, using Eqs. (3), (39), and (57) along with Eq. (5), 

we obtain: 

  ‖Γ‖ ≤ 𝑟, ‖Θ̇̃‖ ≤ 𝑟, ‖Θ̃‖ ≤ tanh−1(𝑟 𝜆−1), 

                              ‖ϑ̃‖ ≤ tanh−1(𝑟 𝜂−1)             (58) 

 

This equation implies that choosing large values for 𝜆 

and 𝜂, especially considering the proximity of 𝑟 to 

zero, can lead to high tracking performance and nearly 

zero ultimate bounds for the other variables. 

6. Illustrative Example and Simulations 

   To demonstrate the effectiveness of the proposed 

controller and evaluate its performance through 

simulation, we present a two-degrees-of-freedom (2-

DoF) manipulator with revolute joints in this section. 

While this paper focuses on the simulation of a 2-DoF 

robot, it is important to note that this system is a 

common and well-accepted benchmark in control 

systems research. The 2-DoF system was chosen 

because it provides sufficient complexity to validate 

the effectiveness of the proposed controller.   

   The components of the robot's inertia matrix are 

defined as follows [20]: 

 

𝐇11 = (𝑚1 + 𝑚2)𝐿1
2 + 𝑚2𝐿2

2 + 2𝑚2𝐿1𝐿2 cos(𝜃2) 

𝐇22 = 𝑚2𝐿2
2  

𝐇12 = 𝐇21 = 𝑚2𝐿2
2 + 𝑚2𝐿1𝐿2 cos(𝜃2) 

 

The entries of the Coriolis matrix 𝐂(Θ, Θ̇) are [20]: 

 

𝐂11 = −𝑚2𝐿1𝐿2 θ̇2 sin(θ2) 

𝐂12 = −𝑚2𝐿1𝐿2 (θ̇1 + θ̇2) sin(θ2) 

𝐂21 = 𝑚2𝐿1𝐿2 θ̇1 sin(θ2) 

𝐂22 = 0 

If g denotes the acceleration due to gravity, the 

components of the gravity force vector can be written 

as [20]: 

 

χ1 = g(𝑚1 + 𝑚2)𝐿1 cos(θ1) + g 𝑚2𝐿2 cos(θ1 + θ2) 

χ2 = g𝑚2𝐿2 cos(θ1 + θ2) 
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Here, we assume that 𝐿1 = 𝐿2 = 1 (m) and 𝑚1 =
𝑚2 = 1 (Kg). 

6.1. Simulations 

For the simulations, the desired position trajectories of 

the links were selected as follows [21]: 

 

θ1d
(𝑡) = −1.9 sin(𝑡) + sin(2𝑡) + π/2 

θ2d
(𝑡) = −1.9 cos(𝑡) + cos(2𝑡) + π/2 

 

The initial conditions of the links are set as θ1(0) =

1 (rad), θ2(0) = 1.5 (rad), θ̇1(0) = 0 and θ̇2(0) =
0. The applied external disturbances are time-varying 

and selected as follows [21]: 

 

τd1
(𝑡) = 0.5 sin(200π𝑡) + 2 sin(𝑡) 

 

τd2
(𝑡) = 0.5 sin(200π𝑡) + cos(2𝑡) 

 

These disturbances include terms that simulate high-

frequency measurement noise. The design parameters 

of the controllers for this task are chosen as follows: 

𝛼 =  12, 𝛽 = 650, 𝛾 = 150, 𝛼̂ = 20, 𝛽̂ = 500, 𝛾 =
200, 𝜆 = 2, 𝜂 = 1, 𝛿1 = 0.01, and 𝛿 = 0.1. These 

gain values are selected arbitrarily but in accordance 

with the stability conditions and Assumptions 1-3. 

   Upon applying the control laws from Eqs. (2), (31) 

and (43), the simulation results, showing the motion 

tracking errors and the torque signals for each robot 

link, are presented in Figures 1–6. The results 

demonstrate that the controllers perform well in 

tracking the desired signals despite the presence of 

disturbances. Additionally, the performance of the 

three controllers remains similar throughout the 

simulation time, making it difficult to determine which 

controller performs best. This was expected, as the 

behaviour of the controllers differs primarily within 

the boundary layer zone of the sliding surface. To 

evaluate the differences in performance more 

precisely, especially within this boundary layer, we 

will further analyse the tracking errors in the next 

subsection. 

 

 

 
 

Fig. 1. Position tracking error of the 1st link for all 

controllers. 

 

 
 

Fig. 2. Position tracking error of the 2nd link for all 

controllers. 

 
 

Fig. 3. Velocity tracking error of the 1st link for all 

controllers. 
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Fig. 4. Velocity tracking error of the 2nd link for all 

controllers. 

 

 
 

Fig. 5. Control torque of the 1st link for all controllers. 

 

 
Fig. 6. Control torque of the 2nd link for all controllers. 

 

6.2. Micro analysis of the tracking performance of all 

controllers 

   In this subsection, we analyse the tracking 

performance of all controllers around the zero-error 

line, focusing on the boundary layer area. The 

objective is to determine which controller minimizes 

the tracking errors most effectively within this region. 

For this analysis, the time period from t=3 (s) to t=15 

(s) is selected, as the tracking errors for all controllers 

converge close to the zero-error line after t=3 (s) (as 

seen in Figures 1–4). The same simulation setup is 

used for this comparison, but with an extended 

simulation time. The results are shown in Figures 7–

10. The results reveal that the enhanced controller (Eq. 

31) and its modified version (Eq. 43) are the most 

effective in reducing the tracking errors within the 

boundary layer. These outcomes are consistent with 

the theoretical predictions from previous sections. 

Notably, controller (Eq. 43) outperforms controller 

(Eq. 31), exhibiting nearly zero tracking errors due to 

the use of the designed integrator. Consequently, we 

conclude that controller (Eq. 43) is the best choice 

among all the evaluated controllers. 

 

 
Fig. 7. Position tracking error of the 1st link for all 

controllers. 

 

 
Fig. 8. Position tracking error of the 2nd link for all 

controllers. 
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Fig. 9. Velocity tracking error of the 1st link for all 

controllers. 

 

 

 
Fig. 10. Velocity tracking error of the 2nd link for all 

controllers. 

 

7. Conclusion 

This study introduces a novel, high-performance 

continuous sliding mode control (SMC) law for 

robotic arms. The controller stands out for its 

structural simplicity and computational efficiency, as 

it does not rely on the robot’s dynamic model. The 

proposed method guarantees Global Ultimate 

Bounded (GUB) stability, with calculated ultimate 

bounds for various tracking errors. To further enhance 

performance, particularly by minimizing these error 

bounds, a nonlinear function is incorporated to 

improve tracking within the boundary layer. This 

modification increases control effort within the 

boundary layer, effectively reducing ultimate tracking 

error bounds. A comprehensive analysis confirms both 

GUB stability and the effectiveness of this enhanced 

control strategy. Additionally, replacing the original 

sliding surface with a proportional-integral (PI) sliding 

surface further improves performance. The PI-based 

sliding mode controller maintains GUB stability while 

achieving superior tracking accuracy. This 

improvement is evidenced by the near-zero ultimate 

error bounds across various tracking metrics. 

   Simulation results from a two-degree-of-freedom 

robotic manipulator validate the enhanced controller's 

superiority over the conventional SMC, particularly 

within the boundary layer, where tracking errors were 

nearly eliminated. The integrator-enhanced controller 

consistently delivers high-precision tracking, even in 

the presence of disturbances, making it a highly 

effective solution for robotic control applications. 

Appendix A 

 

Theorem 4.18 [25] 

 

Let 𝐷 ⊂ ℝ𝑛 be a domain that contains the origin and 

𝑉: [0, ∞) × 𝐷 → ℝ be a continuously differentiable 

function such that 

 

               𝛼1(‖𝑥‖) ≤ 𝑉(𝑡, 𝑥) ≤ 𝛼2(‖𝑥‖)             (A.1) 

 

    
𝜕𝑉

𝜕𝑡
+

𝜕𝑉

𝜕𝑥
𝑓(𝑡, 𝑥) ≤ −𝑊3(𝑥),    ∀‖𝑥‖ ≥ 𝜇 > 0                  

     (A.2) 

 

∀𝑡 ≥ 0 and ∀𝑥 ⊂ 𝐷, where 𝛼1 and 𝛼2 are class 𝒦 

functions and 𝑊3(𝑥) is a continuous positive definite 

function. Take 𝑟 > 0 such that 𝐵𝑟 ⊂ 𝐷 and suppose 

that 

                 𝜇 < 𝛼2
−1(𝛼1(𝑟))                   (A.3) 

Then, there exists a class 𝒦ℒ function 𝛽 and for every 

initial state 𝑥(𝑡0), satisfying ‖𝑥(𝑡0)‖ ≤ 𝛼2
−1(𝛼1(𝑟)), 

there is 𝑇 ≥ 0 (dependent on 𝑥(𝑡0) and 𝜇) such that 

the solution of (𝑥̇ = 𝑓(𝑡, 𝑥)) satisfies 

 

‖𝑥(𝑡)‖ ≤ 𝛽(‖𝑥(𝑡0), 𝑡 − 𝑡0‖), ∀ 𝑡0 ≤ 𝑡 ≤ 𝑡0 + 𝑇 

(A.4) 

 

        ‖𝑥(𝑡)‖ ≤ 𝛼1
−1(𝛼2(𝜇)),  ∀ 𝑡 ≥ 𝑡0 + 𝑇         (A.5) 

 

Moreover, if 𝐷 = ℝ𝑛 and 𝛼1 belongs to class 𝒦∞, 

then Eq. (A.4) and Eq. (A.5) hold for any initial state 

𝑥(𝑡0) with no restriction on how large 𝜇 is. 

 

Note: Here 𝑉is a Lyapunov function and 𝑡 is the time.    
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