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Dental crowns material design is an urgent matter for dental manufacturers. Therefore, 

evaluating the composition and properties for implementing a decision-making model in 

materials design is a topical problem in the field of the design for manufacturing. The 

article aims to develop a supervised machine learning model for dental crowns material 

design. The proposed model is a function of two phases. The first phase that is an 

integration of two methods: FUZZY-ENTROPY and FUZZY-TOPSIS filters the 

submitted dataset and determines the most appropriate dental crowns material, and the 

second phase is a supervised machine learning model in which a filtered dataset that is a 

function of the material composition of zirconia(ZrO2) with different stabilizers at 

different sintering temperatures as inputs, and physical and mechanical properties of the 

different types of stabilized zirconia as outputs is fed into the model, trained using 

regression analysis and validated using mean average percentage error and root mean 

square error. The model can predict the required physical and mechanical properties in 

case of feeding the model with material composition and required sintering 

temperature(direct problem), and the model also can predict the required material 

composition in case of feeding the model with available physical and mechanical 

properties(inverse problem). Our model provides support and help for dental 

manufacturers to optimize dental crowns material.  
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1. Introduction 

Teeth damage has strong implications in phonetics, 

aesthetics, and mastication processes. The repair 

/replacement of damaged tissues is carried out using 

artificial materials, which should be able to withstand the 

severe mechanical, chemical, and thermal oral 

requirements. According to ISO 6872, dental ceramic is an 

inorganic, non-metallic material which is specifically 

formulated for use when processed according to the 

manufacturers’ instructions to form the whole or part of a 

dental restoration or prosthesis[19].  

Dental ceramics are widely used for this purpose especially 

zirconia which is classified as high toughness bioceramic 

material[10]. Pure ZrO2 powder has a monoclinic crystal 

structure at room temperature and transforms to tetragonal 

between 1167ο C and 2367ο C and then cubic zirconia at 

temperatures above 2367ο C. The transition from tetragonal 

to monoclinic phase results in a 3% to 5% volume increase, 

which produces micro-cracks in bulk zirconia samples and 

a reduction in strength and toughness. under this condition, 

pure zirconia would be useless for dental restorative 

applications. However, the addition of some metallic 

oxides(stabilizers) to zirconia has been found to keep the 

tetragonal phase from transforming into a monoclinic 

phase as zirconia cools to room temperature, preventing the 

development of micro-cracks and preserving the 

mechanical properties of the tetragonal phase[9,14,15]. 
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The Types of oxide include magnesia (MgO), Calcia 

(CaO), yttria (Y2O3), Alumina(Al2O3), and ceria (Ce2O3). 

The oxide-doped zirconia is termed stabilized zirconia[11]. 

 Therefore, the study effect of the concentration of 

stabilizer on physical and mechanical properties is an 

urgent matter in dental materials design. In this regard, 

several scientific works in studying the effect of stabilizers 

concentration and sintering temperature on physical and 

mechanical properties are analyzed below in addition to 

some other works in developing automated materials 

selection and design in smart manufacturing. Volodymyr 

et al.[2] analyzed the microstructure, strength, and fracture 

behavior for ZrO2 ceramics stabilized with 3-8 mol%Y2O3 

sintered at 1550ο C for 2h and announced that with an 

increase in Y2O3 content, the average size of grains 

decreased and minimum flexural strength for 5YSZ is 

associated with maximum fraction of cubic ZrO2 phase.  

Hidekazu et al.[12] evaluated the mechanical properties of 

yttria-based zirconia and ceria-based composite zirconia as 

dental materials and announced that ceria-based composite 

zirconia did not exhibit translucency, but it can be applied 

to long-span bridges due to its excellent fracture toughness 

and flexural strength. In the flexural strength test, sample 

3YSZ (yttria-based zirconia) containing 0.26 wt% alumina 

exhibited the highest values among the respective zirconia 

samples, with biaxial flexure strength of 1384 MPa.  

Noor et al.[1] investigated the effect of sintering 

temperature on the mechanical properties of zirconia 

fabricated through colloidal and cold isostatic pressing and 

announced that Sintering temperature, not autoclave aging, 

appeared as the sole factor affecting the mechanical 

performance of the zirconia sample. Based on the other 

mechanical test results, they concluded that the sintering 

temperature of 1500◦C could be considered an appropriate 

temperature for sintering zirconia restorations because of 

acceptable flexural strength, fracture toughness, and 

hardness. It is known that sintering temperatures beyond 

1600ο C and longer dwell times are not suitable for 

improving mechanical properties, as samples may get 

burnt out and become brittle[13]. 

 Ivan et al.[7]announced an automated material selection 

method based on regression analysis for solving the direct 

and inverse problems of rational material selection based 

on phase composition and physical and mechanical 

properties. 

 Mohamed et al.[8] developed a framework for welding 

process selection based on optimization techniques such as 

FUZZY-AHP and FUZZY-TOPSIS.  

Lizheng et al.[18] prepared a good bioceramic material that 

consists of 91wt.% of ZrO2(3Y),6wt.% of Al2O3,3wt.% of 

SiO2 powders, after they use it in manufacturing dental 

crowns by VAT photopolymerization which is an additive 

manufa-cturing process, and the manufactured part could 

meet the performance requirements of all dental implants 

and achieve excellent biocompatibility. 

Hezhen et al.[19] prepared a bioceramic material and its 

major composition is 3mol.% of yttria stabilized zirconia 

and its properties are nearly acceptable but they announced 

that the clinically accepted dental crowns are functions of 

productivity and delivery time, dimensional accuracy, 

surface quality and aesthetic behaviour . 

The target of this study is to design a machine learning 

model that can predict the required physical and 

mechanical properties of dental crowns material in case of 

feeding the model with material composition and required 

sintering temperature (direct problem), and it can also 

predict the required material composition in case of feeding 

the model with available physical and mechanical 

properties (inverse problem), and the previous targets have 

been formulated in two major stages. Firstly, Data was 

prepared and filtered using FUZZY-ENTROPY, and 

FUZZY-TOPSIS. Secon-dly, filtered data has been 

submitted to a machine learning algorithm in which direct 

and inverse problems of rational material selection have 

been solved which is based on phase composition, sintering 

temperatures, and physical and mechanical properties. 

Finally,  matrix dependencies for evalu-ating physical and 

mechanical properties by phase composition and sintering 

temperatures, and vice versa, should be validated by error 

analysis. Overall, the proposed model will help dental 

manufacturers optimize the design and selection of dental 

crowns material. 

  

31



EIJEST Vol.50(2025) 30–47 

          2. Materials and Methods 

               2.1 General model 

                The proposed model is schematically represented in Figure 1,and its consequent stages include the design calculation. 

 

 
 

                                                    Figure 1. The scheme of the proposed model.    
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    2.2 Data collection 

 The first step in our work is data collection which is 

represented in Table1 and Table2, we collect data for 

35 materials which consist of zirconia and different 

Types of stabilizers(Y2O3, MgO, Ce2O3, Al2O3, 

CaO)with different preferable molar concentration at 

a specific range of sintering temperatures, range of 

sintering temperature is from 1400:1600 degree 

Centigrade forming a feature matrix(matrix of 

independent variables) with size 35 and diversity 7, 

then recording mechanical and physical properties for 

each of previous materials such as flexural strength, 

fracture toughness, hardness, density, tetragonal 

phase percentage, cubic phase percentage and grain 

size forming a label matrix (matrix of dependent 

variables) with size 35 and diversity 7. 

 
            Table 1. The chemical composition and sintering temperature range of proposed materials that are taken from following researches[1,2,12,13]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        
             

 

 

 

 

 

Material 

TYPE 

Sintering 

temperature 
ο C 

wt.% of 

Percent 

ZrO2 

 

wt.% of 

Percent 

Y2O3 

 

 

wt.% of 

Percent 

CaO 

 

 

wt.% of 

Percent 

MgO 

 

 

wt.% of 

Percent 

Ce2O3 

 

 

wt.% of 

Percent 

Al2O3 

 

 x1 x 2 x3 x 4 x 5 x 6 x 7 

TYPE1 1400 95.75 4.15 0.05 0 0 0 

TYPE2 1450 95.4 4.5 0.05 0 0 0 

TYPE3 1500 94.8 5.1 0.05 0 0 0 

TYPE4 1550 94.4 5.5 0.05 0 0 0 

TYPE5 1600 93.9 6 0.05 0 0 0 

TYPE6 1400 93.5 6.4 0.05 0 0 0 

TYPE7 1450 93.2 6.7 0.05 0 0 0 

TYPE8 1500 92.9 7 0.05 0 0 0 

TYPE9 1550 92.65 7.25 0.05 0 0 0 

TYPE10 1600 91.9 8 0.05 0 0 0 

TYPE11 1400 90.65 9.25 0.05 0 0 0 

TYPE12 1450 90.5 9.4 0.05 0 0 0 

TYPE13 1500 90.3 9.6 0.05 0 0 0 

TYPE14 1550 90.1 9.8 0.05 0 0 0 

TYPE15 1600 89.9 10 0.05 0 0 0 

TYPE16 1400 97.12 0 0.08 2.8 0 0 

TYPE17 1450 97.02 0 0.08 2.9 0 0 

TYPE18 1500 96.92 0 0.08 3 0 0 

TYPE19 1550 96.82 0 0.08 3.1 0 0 

TYPE20 1600 96.72 0 0.08 3.2 0 0 

TYPE21 1400 83.75 0 0 0 16 0.25 

TYPE22 1450 83.55 0 0 0 16.2 0.25 

TYPE23 1500 83.35 0 0 0 16.4 0.25 

TYPE24 1550 83.15 0 0 0 16.6 0.25 

TYPE25 1600 82.95 0 0 0 16.8 0.25 

TYPE26 1400 23.7 1.3 0.05 0 0 74.95 

TYPE27 1450 23.6 1.3 0.05 0 0 75.05 

TYPE28 1500 23.5 1.3 0.05 0 0 75.15 

TYPE29 1550 23.4 1.3 0.05 0 0 75.25 

TYPE30 1600 23.2 1.3 0.05 0 0 75.45 

TYPE31 1400 94 0 6 0 0 0 

TYPE32 1450 93 0 7 0 0 0 

TYPE33 1500 92.5 0 7.5 0 0 0 

TYPE34 1550 92 0 8 0 0 0 

TYPE35 1600 91.9 0 8.1 0 0 0 

33



EIJEST Vol.50(2025) 30–47 

 Table 2. The mechanical and physical properties of proposed materials that are taken from following researches[1,2,12,13].      

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3 Data preparation 

The second step in our work is data preparation and 

filtration, we optimize the proposed  35 materials(Label 

matrix) by two methods (the FUZZY-ENTROPY)method 

for calculating weights of criteria and (the FUZZY-

TOPSIS)method for material ranking, we claim that 

material is rejected if its relative closeness index less than 

0.5and when we apply that, five  material types are rejected 

in the first trial, ten material types are rejected in a second 

trial, one material type is rejected in third trial and when 

applying the fourth trial , no material rejection occurs 

which implies that data is prepared, filtered. The filtered 

data contains nineteen materials which are a function of % 

wt zirconia, % wt stabilizer, and specific sintering 

temperature. The consequent stages of data preparation are 

previewed below: 

Entropy Weight Method(EWM). [5] In this method, m  

indicators and n samples are set in the evaluation, and the 

measured value of the ith samples for the jth indicators  is 

Material 

TYPE 

Flexural 

strength 

MPa 

Fracture 

Toughness 

Mpa.m0.5 

Vickers 

Hardness 

GPa 

Density 

Kg/m3 

Cubic 

Phase 

% 

Tetragonal 

Phase 

% 

Grain 

Size 

micron 

 y1 y 2 y3 y 4 y 5 y 6 y 7 

TYPE1 650 7 15.7 5.76 5 95 0.5 

TYPE2 900 8 15.5 5.82 7 93 0.54 

TYPE3 1000 9 15.7 5.88 8 92 0.58 

TYPE4 900 13 15.6 5.9 9 91 0.6 

TYPE5 700 10 15.8 6.07 10 90 0.63 

TYPE6 600 4 14.7 5.7 20 80 0.65 

TYPE7 850 5 14.5 5.77 21 79 0.68 

TYPE8 900 6 14.7 5.83 22 78 0.7 

TYPE9 850 7 14.6 5.89 23 77 0.75 

TYPE10 600 6 14.8 6.02 25 75 0.8 

TYPE11 550 3.5 13.7 5.69 45 55 0.85 

TYPE12 650 4 13.5 5.75 46 54 0.86 

TYPE13 800 5 13.7 5.8 47 53 0.88 

TYPE14 650 6 13.6 5.87 48 52 0.9 

TYPE15 600 4 13.8 5.99 50 50 1 

TYPE16 610 10 11 5.66 45 55 30 

TYPE17 615 10.2 11.2 5.68 46 54 32 

TYPE18 620 10.4 11.4 5.7 47 53 34 

TYPE19 610 10.6 11.6 5.73 48 52 37 

TYPE20 600 11 12 5.75 50 50 40 

TYPE21 520 11 11 5.92 5 95 2 

TYPE22 520 11.2 11.2 5.93 7 93 2.2 

TYPE23 530 11.4 11.4 5.95 9 91 2.4 

TYPE24 550 11.7 11.6 6.1 11 89 2.7 

TYPE25 540 12 12 6.2 13 87 3 

TYPE26 730 5 17.2 4.1 1 99 1.5 

TYPE27 735 5.5 17.3 4.15 2 98 1.52 

TYPE28 740 6 17.35 4.2 3 97 1.53 

TYPE29 760 7 17.4 4.25 4 96 1.6 

TYPE30 750 6.5 17.3 4.3 5 95 1.65 

TYPE31 1000 5.2 0.5 5 45 55 0.16 

TYPE32 1050 5.4 0.8 5.2 46 54 0.167 

TYPE33 1100 5.6 1 5.4 47 53 0.17 

TYPE34 1150 6 1.5 5.7 48 52 0.175 

TYPE35 1200 5.8 1.4 5.3 50 50 0.18 
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recorded as yij , first step is the standardization of 

measured values, the standardized value of the ith sample 

in jth indicator the is denoted as Pij, and its calculation 

method is as follows: 

𝑃𝑖𝑗 =
𝑦𝑖𝑗      
𝒏       
∑ 𝒚𝒊𝒋  

𝒊=𝟏       

, 
(1) 

 

 
In the EWM, the entropy value Ej of the jth index is 

Calculated  as follows: 

𝐸𝑗 = − 

𝒏                       
        ∑  (𝒑𝒊𝒋  ∗ 𝒍𝒏(𝒑𝒊𝒋) )

𝒊 = 𝟏                         
      

𝒍𝒏(𝒏)
 

(2) 

 
In the EWM, the calculation method of weight wj is 

as follows: 

𝑊𝑗 =
1 − 𝐸𝑗       

𝒎                 
∑(𝟏 − 𝑬𝒋)  

𝑱 = 𝟏                

 
(3) 

The weights calculated from EWM is used in FUZZY-

TOPSIS method to get the most suitable materials ,the 

common algorithm of TOPSIS for ranking and selection 

includes the following seven steps [21] : 

 
Step1: Create a decision or evaluation matrix D. 

The matrix consists of n samples (A1,…, Am) and m 

criteria (y1,…, ym), with its element yij , where i =( 1 

,…………. , n) and j = (1 , ……………. , m ): 

 

 

Step 2: Construct the normalized decision matrix R. : 

𝑟𝑖𝑗 =
𝑦𝑖𝑗     

√

𝒏       
  ∑ 𝒚𝒊𝒋

𝟐  

𝒊 = 𝟏       

  

(5) 

𝑅 =     [

𝑟11 ⋯ 𝑟1𝑚

⋮ ⋮ ⋮
𝑟𝑛1 ⋯ 𝑟𝑛𝑚

]

𝑛𝑋𝑚

 (6) 

the text following an equation need not be a new paragraph. 
Please punctuate equations as regular text. 

 
Step 3: Construct the weighted  normalized decision 

matrix V : 

[V]= [𝑊𝑗𝑟𝑖𝑗] (7) 

A set of weights W=(𝑤1,……….,𝑤𝑚)and ∑ 𝑤𝑗 
𝑚
𝑗=1 =

1,𝑤ℎ𝑒𝑟𝑒 𝑤𝑗 > 0,   𝑗 =
        1, … … ,𝑚 𝑖𝑠 𝑔𝑖𝑣𝑒𝑛 𝑡𝑜 𝑡ℎ𝑒 𝑐𝑜𝑒𝑒𝑟𝑒𝑝𝑜𝑛𝑖𝑛𝑔  
𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 𝑦𝑗, Where j=1,……..,m. The matrix    

V=[𝑤𝑗𝑟𝑖𝑗] is calculated by multiplying the elements as 

each column of the matrix R by   their associated weights 
𝑤𝑗 , 𝑗 = 1, …… . ,𝑚 

 

𝑉 =     [

𝑣11 ⋯ 𝑣1𝑚

⋮ ⋮ ⋮
𝑣𝑛1 ⋯ 𝑣𝑛𝑚

]

𝑛𝑋𝑚

 (8) 

 
Step 4 : determination of  the positive ideal and 

negative –ideal solution 𝑉+(PIS) and 
𝑉−(NIS),respectively. 

PIS is defined as : 

 

 𝑉+ = {𝑣1
+, … … , 𝑣𝑚

+} ={(
max

𝑖
 𝑣𝑖𝑗|𝑗 ∈

𝐽) , ((
min
𝑖

 𝑣𝑖𝑗|𝑗 ∈ 𝐽′))} 
(9) 

and NIS is defined as :  

 

𝑉− = {𝑣1
−, … … , 𝑣𝑚

−} ={(
min
𝑖

 𝑣𝑖𝑗|𝑗 ∈

𝐽) , ((
max

𝑖
 𝑣𝑖𝑗|𝑗 ∈ 𝐽′))} 

(10) 

where j is associated with the benefit criteria and 𝑗′ is 
associated with the cost  criteria ,on criterion 𝑦𝑗 , 𝑤ℎ𝑒𝑟𝑒 𝑗 =
1,… … . ,𝑚 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖 = 1,… … . . , 𝑛. 

 
Step5: Calculate the separation measure between 

alternative 𝐴𝑖 
(samples),
 𝑠𝑖

+𝑎𝑛𝑑 𝑠𝑖
− , 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑖𝑑𝑒𝑎𝑙 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣 𝑖𝑑𝑒𝑎𝑙 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠, 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦. 

The separation measure or distance between 

alternatives (samples) and the PIS can be measured by n-
dimensional Euclidean distance as follows 

𝑆𝑖
+ = √

𝒎                      

  ∑(𝑽𝒊𝒋 − 𝑽𝑱
+)𝟐  

𝒋 = 𝟏                      

 (11) 

for alternatives 𝐴𝑖  , i=1,…….,n 
 

𝐷 =     [

𝑦11 ⋯ 𝑦1𝑚

⋮ ⋮ ⋮
𝑦𝑛1 ⋯ 𝑦𝑛𝑚

]

𝑛𝑋𝑚

 

 

(4) 
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The separation measure or distance between 

alternatives (samples) and the NIS can be illustrated as 
follows: 

𝑆𝑖
− = √

𝒎                      

  ∑(𝑽𝒊𝒋 − 𝑽𝑱
−)𝟐  

𝒋 = 𝟏                      

 (12) 

for alternatives 𝐴𝑖 ,i=1,…….,n 
 
 
Step 6: Calculate the relative closeness 𝐶𝑖

∗ of 
alternatives 𝐴𝑖, i=1,…….,n, the relative closeness or 
ranking index of samples is defined as follows: 

 

𝐂𝐢
∗ =

𝐒𝐢
−

𝐒𝐢
++𝐒𝐢

−  (13) 

 
The larger the index value is, the better is the 

performance of the alternative. The relative closeness is the 
judgment rule of the decision in FUZZY- TOPSIS[3]. 

 

Step 7: Rank the preference order of all alternatives.  

A set of alternatives 𝐴𝑖  , i = 1,…, n, can now be 

preference ranked according to the descending order of the 

value of 𝑐𝑖
∗. In general, the selection should be the 

alternative with the highest value of the relative closeness, 

but it is claimed that if relative closeness of alternative is 

less than 0.5 ,it is rejected and previous steps are repeated 

until the trial in which all alternative is greater than or 

approaches 0.5,then at that trial data is prepared and ready 

for machine learning model .  

2.2 Data prediction 

The third step in our work is feeding data into 

machine learning algorithm in which filtered data is 

normalized then trained by regression analysis and after 

that machine learning model is formed which its target is 

required data prediction .when input feature matrix is fed 

into machine learning model ,the model will predict the 

target label matrix .then we calculate the error percentage 

using MAPE(mean average percentage error ) which is 

preferred to be less than 50 percent to be accepted. 

2.2.1Direct problem 

  This is a normalized feature matrix of phase composition 

and sintering temperature : 

�̅�𝑖,𝑗 =
𝑥𝑖𝑗

Max (𝑥𝑗)
  (14) 

This is a normalized label matrix of physical and 

mechanical properties : 

�̅�𝑖,𝑗 =
𝑦𝑖𝑗

Max (𝑦𝑗)
  (15) 

the direct problem is the evaluation of the impact of 
material’s phase composition and sintering temperature on 
its physical and mechanical properties based on following 

 matrix equation: 

[�̅�][Ɵ] = [�̅�] (16) 

the weighted decision matrix[Ɵ] is evaluated using the 

following equation : 

[Ɵ] = (�̅�𝑇�̅�)−1�̅�𝑇�̅�  (17) 

The unknown matrix[Ŷ̅] of physical and mechanical 

properties can be evaluated from the following equation: 
 

[Ŷ̅] = [�̅�][Ɵ] (18) 

The estimation accuracy can be estimated by mean 
absolute percentage error[16] which is indicated as follows 
: 

𝑀𝐴𝑃𝐸𝑗 =

  
𝟏

𝒏
 ∑ (|

ŷ̅𝒊𝒋−�̅�𝒊𝒋

�̅�𝒊𝒋
|)𝒏

𝒊=𝟏   
                

   (19) 

the less the mean absolute percentage error ,the higher the 

estimation accuracy for the direct problem. The true 

values can be estimated from following equation: 

True value = 
𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒

1−𝑀𝐴𝑃𝐸
  (20) 

2.2.2 Inverse problem 

This inverse problem is more valuable for practical 
purposes in which the predicted  label matrix is indicated 
as follows: 

[�̂�] = [

𝑥10 ⋯ 𝑥1𝑑

⋮ ⋱ ⋮
𝑥𝑛0 ⋯ 𝑥𝑛𝑑

]

𝑛𝑥(𝑑+1)

 (21) 

Matrix is rectangular with dimension n x (d+1),where n 

total number of considered materials and d is total number 

of phase compositions and sintering temperature, we also  

add column for bias in which each value is equal one. 

This is a normalized feature matrix of physical and 

mechanical properties : 
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[�̅�] = [

𝑦11 ⋯ 𝑦1𝑚

⋮ ⋱ ⋮
𝑦𝑛1 ⋯ 𝑦𝑛𝑚

]

𝑛𝑥𝑚

 (22) 

This is a governing equation to get the label predicted 

matrix : 

[�̂̅�] = (([Ɵ][Ɵ𝑇])−1[Ɵ][�̅�]𝑇) 𝑇 (23) 

The estimation accuracy can be estimated by root 

mean square error[16] which is indicated as follows: 

𝑅𝑀𝑆𝐸𝐾 =
√

𝒏               
  ∑(�̅̂�−�̅�)𝟐  
𝒊=𝟏             

𝑛
  

(24) 

𝑅𝑀𝑆𝐸𝑘 is for a (d) attributes where k=(1,…….,d) 

𝑁𝑅𝑀𝑆𝐸𝐾 =
𝑅𝑀𝑆𝐸𝐾

𝑀𝑎𝑥(𝑋𝐾) − 𝑀𝑖𝑛(𝑋𝐾)
 (25) 

𝑁𝑅𝑀𝑆𝐸𝑘[17] is a way to gain better understanding of 
RMSE for a (d) attributes where k=(1,…….,d). 

 

3. Results 

3.1. results of data preparation stage 

The results of data preparation stages are 

represented in Table 3( which includes evaluation of 

weights),Table4,Table5,Table6 and Table7 (which 

include FUZZY-TOPSIS ranking and evaluation of 35 

proposed materials),Table8,Table9and Table10 include 

filtered datasets that are submitted to supervised machine 

learning model.  

Table 3. Evaluation of weights of 7 criteria which represents mechanical and physical properties of samples. 

 

 

 

 

 

 
                              
Table 4. This is a TOPSIS evaluation of 35 proposed materials(trial one). 

Trial 

number 
W1 W2 

 

W3 

 

W4 

 

W5 

 

 

W6 

 

 

W7 

 

 y1 y 2 y3 y 4 y 5 y6 y 7 

Trial 1 0.0168 0.0357 0.0667 0.0034 0.1633 0.0185 0.6956 

Trial 2 0.0365 0.0781 0.1619 0.0082 0.3939 0.0339 0.2874 

Trial 3 0.0453 0.0921 0.3323 0.0019 0.2776 0.0485 0.2023 

Trial 4 0.0505 0.1028 0.2880 0.0013 0.3162 0.0528 0.1883 

        

Material 

TYPE 

Trial 1 

𝒔𝒊+ 𝒔𝒊− ci* Rank 

TYPE1 0.3422 39.5000 0.99141 6 

TYPE2 0.3818 39.4600 0.99042 7 

TYPE3 0.4215 39.4200 0.98942 8 

TYPE4 0.4414 39.4000 0.98892 9 

TYPE5 0.4712 39.3700 0.98817 10 

TYPE6 0.4907 39.3500 0.98768 11 

TYPE7 0.5206 39.3200 0.98693 12 

TYPE8 0.5406 39.3000 0.98643 13 

TYPE9 0.5905 39.2500 0.98518 14 

TYPE10 0.6404 39.2000 0.98393 15 

TYPE11 0.6901 39.1500 0.98268 16 

TYPE12 0.7001 39.1400 0.98243 17 

TYPE13 0.7200 39.1200 0.98193 18 

TYPE14 0.7400 39.1000 0.98142 19 

TYPE15 0.8400 39.0000 0.97891 20 

TYPE16 29.8400 10.0001 0.25101 31 
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Table 5. This is a TOPSIS evaluation of 35 proposed materials(trial two). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TYPE17 31.8400 8.0001 0.20081 32 

TYPE18 33.8400 6.0001 0.15061 33 

TYPE19 36.8400 3.0003 0.07531 34 

TYPE20 39.8400 0.0432 0.00108 35 

TYPE21 1.8404 38.0000 0.95381 26 

TYPE22 2.0403 37.8000 0.94879 27 

TYPE23 2.2403 37.6000 0.94377 28 

TYPE24 2.5402 37.3000 0.93624 29 

TYPE25 2.8402 37.0000 0.92871 30 

TYPE26 1.3407 38.5000 0.96635 21 

TYPE27 1.3606 38.4800 0.96585 22 

TYPE28 1.3706 38.4700 0.96560 23 

TYPE29 1.4405 38.4000 0.96384 24 

TYPE30 1.4905 38.3500 0.96259 25 

TYPE31 0.0163 39.8400 0.99959 1 

TYPE32 0.0173 39.8330 0.99957 2 

TYPE33 0.0184 39.8300 0.99954 3 

TYPE34 0.0211 39.8250 0.99947 4 

TYPE35 0.0249 39.8200 0.99937 5 

Material 

TYPE 

Trial 2 

𝒔𝒊+ 𝒔𝒊− ci* Rank 

TYPE1 0.1121 0.1063 0.500 20 

TYPE2 0.1073 0.1054 0.500 19 

TYPE3 0.1049 0.1046 0.500 18 

TYPE4 0.1024 0.1052 0.507 17 

TYPE5 0.1004 0.1039 0.509 16 

TYPE6 0.0785 0.1097 0.583 15 

TYPE7 0.0761 0.1097 0.590 14 

TYPE8 0.0736 0.1103 0.600 13 

TYPE9 0.0717 0.1099 0.605 12 

TYPE10 0.0683 0.1107 0.619 11 

TYPE11 0.0366 0.1413 0.794 8 

TYPE12 0.0357 0.1428 0.800 6 

TYPE13 0.0347 0.1444 0.806 4 

TYPE14 0.0344 0.1458 0.809 3 

TYPE15 0.0390 0.1476 0.791 9 

TYPE21 0.1338 0.0495 0.270 26 

TYPE22 0.1344 0.0450 0.251 27 

TYPE23 0.1357 0.0421 0.237 28 

TYPE24 0.1405 0.0399 0.221 30 

TYPE25 0.1462 0.0421 0.224 29 

TYPE26 0.1327 0.0707 0.347 24 

TYPE27 0.1307 0.0702 0.349 23 

TYPE28 0.1286 0.0701 0.353 21 

TYPE29 0.1275 0.0682 0.349 22 

TYPE30 0.1263 0.0666 0.345 25 

TYPE31 0.0421 0.1570 0.789 10 

TYPE32 0.0407 0.1586 0.796 7 

TYPE33 0.0396 0.1602 0.802 5 

TYPE34 0.0380 0.1619 0.810 2 

TYPE35 0.0380 0.1653 0.813 1 
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 Table 6. This is a TOPSIS evaluation of 35 proposed materials(trial three). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                      
 

 

 
Table 7.This is a TOPSIS evaluation of 35 proposed materials(trial four). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        
 

  
 

 
 

 
 
 

Material 

TYPE 

Trial 3 

𝒔𝒊+ 𝒔𝒊− ci* Rank 

TYPE1 0.0809 0.0891 0.52 15 

TYPE2 0.0769 0.0880 0.53 14 

TYPE3 0.0750 0.0894 0.54 13 

TYPE4 0.0728 0.0908 0.56 12 

TYPE5 0.0720 0.0899 0.56 11 

TYPE6 0.0603 0.0845 0.58 10 

TYPE7 0.0578 0.0839 0.59 9 

TYPE8 0.0554 0.0856 0.61 8 

TYPE9 0.0537 0.0856 0.61 7 

TYPE10 0.0526 0.0872 0.62 6 

TYPE11 0.0382 0.0990 0.72 5 

TYPE12 0.0373 0.0993 0.73 4 

TYPE13 0.0350 0.1014 0.74 2 

TYPE14 0.0345 0.1022 0.75 1 

TYPE15 0.0394 0.1052 0.73 3 

TYPE31 0.0902 0.0703 0.44 20 

TYPE32 0.0882 0.0719 0.50 19 

TYPE33 0.0869 0.0737 0.50 18 

TYPE34 0.0838 0.0755 0.50 17 

TYPE35 0.0844 0.0787 0.50 16 

Material 

TYPE 

Trial 4 

𝒔𝒊+ 𝒔𝒊− ci* Rank 

TYPE1 0.0917 0.0765 0.5 19 

TYPE2 0.0872 0.0757 0.5 18 

TYPE3 0.0849 0.0771 0.5 17 

TYPE4 0.0823 0.0796 0.5 15 

TYPE5 0.0813 0.0777 0.5 16 

TYPE6 0.0674 0.0736 0.5 12 

TYPE7 0.0644 0.0735 0.5 10 

TYPE8 0.0616 0.0753 0.6 8 

TYPE9 0.0595 0.0757 0.6 7 

TYPE10 0.0580 0.0776 0.6 6 

TYPE11 0.0394 0.0971 0.7 5 

TYPE12 0.0380 0.0980 0.7 3 

TYPE13 0.0352 0.1003 0.7 2 

TYPE14 0.0343 0.1016 0.7 1 

TYPE15 0.0396 0.1050 0.7 4 

TYPE32 0.0780 0.0799 0.5 14 

TYPE33 0.0767 0.0819 0.5 13 

TYPE34 0.0739 0.0840 0.5 11 

TYPE35 0.0745 0.0877 0.5 9 
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  Table 8. This is a label table of physical and mechanical properties of filtered materials 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 9. This is a feature table of phase composition and sintering temperature of filtered materials 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Filtered 

material 

TYPE 

Flexural 

strength 

MPa 

Fracture 

Toughn

ess 

Mpa.m0.

5 

Vickers 

Hardnes

s 

GPa 

Density 

Kg/m3 

Cubic 

Phase 

% 

Tetrago

nal 

Phase 

% 

Grain 

Size 

micron 

 y1 y 2 y3 y 4 y 5 y 6 y 7 

TYPE1 650 7 15.7 5.76 5 95 0.5 

TYPE2 900 8 15.5 5.82 7 93 0.54 

TYPE3 1000 9 15.7 5.88 8 92 0.58 

TYPE4 900 13 15.6 5.9 9 91 0.6 

TYPE5 700 10 15.8 6.07 10 90 0.63 

TYPE6 600 4 14.7 5.7 20 80 0.65 

TYPE7 850 5 14.5 5.77 21 79 0.68 

TYPE8 900 6 14.7 5.83 22 78 0.7 

TYPE9 850 7 14.6 5.89 23 77 0.75 

TYPE10 600 6 14.8 6.02 25 75 0.8 

TYPE11 550 3.5 13.7 5.69 45 55 0.85 

TYPE12 650 4 13.5 5.75 46 54 0.86 

TYPE13 800 5 13.7 5.8 47 53 0.88 

TYPE14 650 6 13.6 5.87 48 52 0.9 

TYPE15 600 4 13.8 5.99 50 50 1 

TYPE32 1050 5.4 0.8 5.2 46 54 0.167 

TYPE33 1100 5.6 1 5.4 47 53 0.17 

TYPE34 1150 6 1.5 5.7 48 52 0.175 

TYPE35 1200 5.8 1.4 5.3 50 50 0.18 

        

Filtered 

material 

TYPE 

Sintering 

temperat

ure 

ο C 

wt.% of 

ZrO2 

 

wt.% of 

Y2O3 

 

 

wt.% of 

CaO 

 

 

wt.% of 

MgO 

 

 

wt.% of 

Ce2O3 

 

 

wt.% of 

Al2O3 

 

 x1 x 2 x3 x 4 x 5 x 6 x 7 

TYPE1 1400 95.75 4.15 0.05 0 0 0.05 

TYPE2 1450 95.4 4.5 0.05 0 0 0.05 

TYPE3 1500 94.8 5.1 0.05 0 0 0.05 

TYPE4 1550 94.4 5.5 0.05 0 0 0.05 

TYPE5 1600 93.9 6 0.05 0 0 0.05 

TYPE6 1400 93.5 6.4 0.05 0 0 0.05 

TYPE7 1450 93.2 6.7 0.05 0 0 0.05 

TYPE8 1500 92.9 7 0.05 0 0 0.05 

TYPE9 1550 92.65 7.25 0.05 0 0 0.05 

TYPE10 1600 91.9 8 0.05 0 0 0.05 

TYPE11 1400 90.65 9.25 0.05 0 0 0.05 

TYPE12 1450 90.5 9.4 0.05 0 0 0.05 

TYPE13 1500 90.3 9.6 0.05 0 0 0.05 

TYPE14 1550 90.1 9.8 0.05 0 0 0.05 

TYPE15 1600 89.9 10 0.05 0 0 0.05 

TYPE32 1450 93 0 7 0 0 0 

TYPE33 1500 92.5 0 7.5 0 0 0 

TYPE34 1550 92 0 8 0 0 0 

TYPE35 1600 91.9 0 8.1 0 0 0 
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Table 10. This is a feature table of phase composition and sintering temperature of filtered materials     after exclusion of zero columns. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2. results of data prediction stage 

This is a normalized matrix of phase composition and sintering temperature : 

[�̅�] =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝟏 𝟎. 𝟖𝟕𝟓𝟎 𝟏. 𝟎𝟎𝟎𝟎
𝟏 𝟎. 𝟗𝟎𝟔𝟑 𝟎. 𝟗𝟗𝟔𝟑
𝟏 𝟎. 𝟗𝟑𝟕𝟓 𝟎. 𝟗𝟗𝟎𝟏

𝟎. 𝟒𝟏𝟓𝟎 𝟏. 𝟎𝟎𝟎𝟎 𝟎. 𝟎𝟎𝟔𝟑
𝟎. 𝟒𝟓𝟎𝟎 𝟏. 𝟎𝟎𝟎𝟎 𝟎. 𝟎𝟎𝟔𝟑
𝟎. 𝟓𝟏𝟎𝟎 𝟏. 𝟎𝟎𝟎𝟎 𝟎. 𝟎𝟎𝟔𝟑

𝟏 𝟎. 𝟗𝟔𝟖𝟖 𝟎. 𝟗𝟖𝟓𝟗
𝟏 𝟏. 𝟎𝟎𝟎𝟎 𝟎. 𝟗𝟖𝟎𝟕
𝟏
𝟏
𝟏
𝟏
𝟏
𝟏
𝟏
𝟏
𝟏
𝟏
𝟏
𝟏
𝟏
𝟏

𝟎. 𝟖𝟕𝟓𝟎
𝟎. 𝟗𝟎𝟔𝟑
𝟎. 𝟗𝟑𝟕𝟓
𝟎. 𝟗𝟔𝟖𝟖
𝟏. 𝟎𝟎𝟎𝟎
𝟎. 𝟖𝟕𝟓𝟎
𝟎. 𝟗𝟎𝟔𝟑
𝟎. 𝟗𝟑𝟕𝟓
𝟎. 𝟗𝟔𝟖𝟖
𝟏. 𝟎𝟎𝟎𝟎
𝟎. 𝟗𝟎𝟔𝟑
𝟎. 𝟗𝟑𝟕𝟓
𝟎. 𝟗𝟔𝟖𝟖
𝟏. 𝟎𝟎𝟎𝟎

𝟎. 𝟗𝟕𝟔𝟓
𝟎. 𝟗𝟕𝟑𝟒
𝟎. 𝟗𝟕𝟎𝟐
𝟎. 𝟗𝟔𝟕𝟔
𝟎. 𝟗𝟓𝟗𝟖
𝟎. 𝟗𝟒𝟔𝟕
𝟎. 𝟗𝟒𝟓𝟐
𝟎. 𝟗𝟒𝟑𝟏
𝟎. 𝟗𝟒𝟏𝟎
𝟎. 𝟗𝟑𝟖𝟗
𝟎. 𝟗𝟖𝟏𝟕
𝟎. 𝟗𝟕𝟏𝟑
𝟎. 𝟗𝟔𝟔𝟏
𝟎. 𝟗𝟔𝟎𝟖

𝟎. 𝟓𝟓𝟎𝟎 𝟏. 𝟎𝟎𝟎𝟎 𝟎. 𝟎𝟎𝟔𝟑
𝟎. 𝟔𝟎𝟎𝟎 𝟏. 𝟎𝟎𝟎𝟎 𝟎. 𝟎𝟎𝟔𝟑
𝟎. 𝟔𝟒𝟎𝟎
𝟎. 𝟔𝟕𝟎𝟎
𝟎. 𝟕𝟎𝟎𝟎
𝟎. 𝟕𝟐𝟓𝟎
𝟎. 𝟖𝟎𝟎𝟎
𝟎. 𝟗𝟐𝟓𝟎
𝟎. 𝟗𝟒𝟎𝟎
𝟎. 𝟗𝟔𝟎𝟎
𝟎. 𝟗𝟖𝟎𝟎
𝟏. 𝟎𝟎𝟎𝟎
𝟎. 𝟎𝟎𝟎𝟎
𝟎. 𝟎𝟎𝟎𝟎
𝟎. 𝟎𝟎𝟎𝟎
𝟎. 𝟎𝟎𝟎𝟎

𝟏. 𝟎𝟎𝟎𝟎
𝟏. 𝟎𝟎𝟎𝟎
𝟏. 𝟎𝟎𝟎𝟎
𝟏. 𝟎𝟎𝟎𝟎
𝟏. 𝟎𝟎𝟎𝟎
𝟏. 𝟎𝟎𝟎𝟎
𝟏. 𝟎𝟎𝟎𝟎
𝟏. 𝟎𝟎𝟎𝟎
𝟏. 𝟎𝟎𝟎𝟎
𝟏. 𝟎𝟎𝟎𝟎
𝟎. 𝟎𝟎𝟎𝟎
𝟎. 𝟎𝟎𝟎𝟎
𝟎. 𝟎𝟎𝟎𝟎
𝟎. 𝟎𝟎𝟎𝟎

𝟎. 𝟎𝟎𝟔𝟑
𝟎. 𝟎𝟎𝟔𝟑
𝟎. 𝟎𝟎𝟔𝟑
𝟎. 𝟎𝟎𝟔𝟑
𝟎. 𝟎𝟎𝟔𝟑
𝟎. 𝟎𝟎𝟔𝟑
𝟎. 𝟎𝟎𝟔𝟑
𝟎. 𝟎𝟎𝟔𝟑
𝟎. 𝟎𝟎𝟔𝟑
𝟎. 𝟎𝟎𝟔𝟑
𝟎. 𝟕𝟓𝟎𝟎
𝟎. 𝟖𝟕𝟓𝟎
𝟎. 𝟗𝟑𝟕𝟓
𝟏. 𝟎𝟎𝟎𝟎]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝐧𝐱(𝐝+𝟏)

, (26) 

we add a column for bias in which each value is one, and all normalized values are between 0 and 1. 

 . This is a normalized matrix of physical and mechanical properties: 

[𝐘] =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝟎. 𝟓𝟎𝟎𝟎 𝟎. 𝟓𝟑𝟖𝟓 𝟎. 𝟗𝟗𝟑𝟕 𝟎. 𝟗𝟒𝟖𝟗
𝟎. 𝟕𝟓𝟎𝟎 𝟎. 𝟔𝟏𝟓𝟒 𝟎. 𝟗𝟖𝟏𝟎 𝟎. 𝟗𝟓𝟖𝟖
𝟎. 𝟖𝟑𝟑𝟑 𝟎. 𝟔𝟗𝟐𝟑 𝟎. 𝟗𝟗𝟑𝟕 𝟎. 𝟗𝟔𝟖𝟕

𝟎. 𝟏𝟎𝟎𝟎 𝟏. 𝟎𝟎𝟎𝟎 𝟎. 𝟓𝟎𝟎𝟎
𝟎. 𝟏𝟒𝟎𝟎 𝟎. 𝟗𝟕𝟖𝟗 𝟎. 𝟓𝟒𝟎𝟎
𝟎. 𝟏𝟔𝟎𝟎 𝟎. 𝟗𝟔𝟖𝟒 𝟎. 𝟓𝟖𝟎𝟎

𝟎. 𝟕𝟓𝟎𝟎 𝟏. 𝟎𝟎𝟎𝟎 𝟎. 𝟗𝟖𝟕𝟑 𝟎. 𝟗𝟕𝟐𝟎
𝟎. 𝟓𝟖𝟑𝟑 𝟎. 𝟕𝟔𝟗𝟐 𝟏. 𝟎𝟎𝟎𝟎 𝟏. 𝟎𝟎𝟎𝟎 
𝟎. 𝟓𝟎𝟎𝟎 
𝟎. 𝟕𝟎𝟖𝟑
𝟎. 𝟕𝟓𝟎𝟎
𝟎. 𝟕𝟎𝟖𝟑
𝟎. 𝟓𝟎𝟎𝟎
𝟎. 𝟒𝟓𝟖𝟑 
𝟎. 𝟓𝟒𝟏𝟕 
𝟎. 𝟔𝟔𝟔𝟕
𝟎. 𝟓𝟒𝟏𝟕
𝟎. 𝟓𝟎𝟎𝟎
𝟎. 𝟖𝟕𝟓𝟎
𝟎. 𝟗𝟏𝟔𝟕 
𝟎. 𝟗𝟓𝟖𝟑 
𝟏. 𝟎𝟎𝟎𝟎

𝟎. 𝟑𝟎𝟕𝟕
𝟎. 𝟑𝟖𝟒𝟔
𝟎. 𝟒𝟔𝟏𝟓
𝟎. 𝟓𝟑𝟖𝟓
𝟎. 𝟒𝟔𝟏𝟓
𝟎. 𝟐𝟔𝟗𝟐
𝟎. 𝟑𝟎𝟕𝟕
𝟎. 𝟑𝟖𝟒𝟔
𝟎. 𝟒𝟔𝟏𝟓
𝟎. 𝟑𝟎𝟕𝟕
𝟎. 𝟒𝟏𝟓𝟒
𝟎. 𝟒𝟑𝟎𝟖
𝟎. 𝟒𝟔𝟏𝟓
𝟎. 𝟒𝟒𝟔𝟐

𝟎. 𝟗𝟑𝟎𝟒
𝟎. 𝟗𝟏𝟕𝟕
𝟎. 𝟗𝟑𝟎𝟒
𝟎. 𝟗𝟐𝟒𝟏
𝟎. 𝟗𝟑𝟔𝟕
𝟎. 𝟖𝟔𝟕𝟏
𝟎. 𝟖𝟓𝟒𝟒
𝟎. 𝟖𝟔𝟕𝟏
𝟎. 𝟖𝟔𝟎𝟖
𝟎. 𝟖𝟕𝟑𝟒
𝟎. 𝟎𝟓𝟎𝟔
𝟎. 𝟎𝟔𝟑𝟑
𝟎. 𝟎𝟗𝟒𝟗
𝟎. 𝟎𝟖𝟖𝟔

𝟎. 𝟗𝟑𝟗𝟎
𝟎. 𝟗𝟓𝟎𝟔
𝟎. 𝟗𝟔𝟎𝟓
𝟎. 𝟗𝟕𝟎𝟑
𝟎. 𝟗𝟗𝟏𝟖
𝟎. 𝟗𝟑𝟕𝟒
𝟎. 𝟗𝟒𝟕𝟑
𝟎. 𝟗𝟓𝟓𝟓
𝟎. 𝟗𝟔𝟕𝟏
𝟎. 𝟗𝟖𝟔𝟖
𝟎. 𝟖𝟓𝟔𝟕
𝟎. 𝟖𝟖𝟗𝟔
𝟎. 𝟗𝟑𝟗𝟎
𝟎. 𝟖𝟕𝟑𝟏

𝟎. 𝟏𝟖𝟎𝟎 𝟎. 𝟗𝟓𝟕𝟗 𝟎. 𝟔𝟎𝟎𝟎
𝟎. 𝟐𝟎𝟎𝟎 𝟎. 𝟗𝟒𝟕𝟒 𝟎. 𝟔𝟑𝟎𝟎
𝟎. 𝟒𝟎𝟎𝟎
𝟎. 𝟒𝟐𝟎𝟎
𝟎. 𝟒𝟒𝟎𝟎
𝟎. 𝟒𝟔𝟎𝟎
𝟎. 𝟓𝟎𝟎𝟎
𝟎. 𝟗𝟎𝟎𝟎
𝟎. 𝟗𝟐𝟎𝟎
𝟎. 𝟗𝟒𝟎𝟎
𝟎. 𝟗𝟔𝟎𝟎
𝟏. 𝟎𝟎𝟎𝟎
𝟎. 𝟗𝟐𝟎𝟎
𝟎. 𝟗𝟒𝟎𝟎
𝟎. 𝟗𝟔𝟎𝟎
𝟏. 𝟎𝟎𝟎𝟎

𝟎. 𝟖𝟒𝟐𝟏
𝟎. 𝟖𝟑𝟏𝟔
𝟎. 𝟖𝟐𝟏𝟏
𝟎. 𝟖𝟏𝟎𝟓
𝟎. 𝟕𝟖𝟗𝟓
𝟎. 𝟓𝟕𝟖𝟗
𝟎. 𝟓𝟔𝟖𝟒
𝟎. 𝟓𝟓𝟕𝟗
𝟎. 𝟓𝟒𝟕𝟒
𝟎. 𝟓𝟐𝟔𝟑
𝟎. 𝟓𝟔𝟖𝟒
𝟎. 𝟓𝟓𝟕𝟗
𝟎. 𝟓𝟒𝟕𝟒
𝟎. 𝟓𝟐𝟔𝟑

𝟎. 𝟔𝟓𝟎𝟎
𝟎. 𝟔𝟖𝟎𝟎
𝟎. 𝟕𝟎𝟎𝟎
𝟎. 𝟕𝟓𝟎𝟎
𝟎. 𝟖𝟎𝟎𝟎
𝟎. 𝟖𝟓𝟎𝟎
𝟎. 𝟖𝟔𝟎𝟎
𝟎. 𝟖𝟖𝟎𝟎
𝟎. 𝟗𝟎𝟎𝟎
𝟏. 𝟎𝟎𝟎𝟎
𝟎. 𝟏𝟔𝟕𝟎
𝟎. 𝟏𝟕𝟎𝟎
𝟎. 𝟏𝟕𝟓𝟎
𝟎. 𝟏𝟖𝟎𝟎]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝐧𝐱𝐦

 (27) 

 

Filtered 

material 

TYPE 

Sintering 

temperature 

ο C 

wt.% of 

ZrO2 

 

wt.% of 

Y2O3 

 

 

wt.% of 

CaO 

 

 

wt.% of 

Al2O3 

 

 x1 x 2 x3 x 4 x 7 

TYPE1 1400 95.75 4.15 0.05 0.05 

TYPE2 1450 95.4 4.5 0.05 0.05 

TYPE3 1500 94.8 5.1 0.05 0.05 

TYPE4 1550 94.4 5.5 0.05 0.05 

TYPE5 1600 93.9 6 0.05 0.05 

TYPE6 1400 93.5 6.4 0.05 0.05 

TYPE7 1450 93.2 6.7 0.05 0.05 

TYPE8 1500 92.9 7 0.05 0.05 

TYPE9 1550 92.65 7.25 0.05 0.05 

TYPE10 1600 91.9 8 0.05 0.05 

TYPE11 1400 90.65 9.25 0.05 0.05 

TYPE12 1450 90.5 9.4 0.05 0.05 

TYPE13 1500 90.3 9.6 0.05 0.05 

TYPE14 1550 90.1 9.8 0.05 0.05 

TYPE15 1600 89.9 10 0.05 0.05 

TYPE32 1450 93 0 7 0 

TYPE33 1500 92.5 0 7.5 0 

TYPE34 1550 92 0 8 0 

TYPE35 1600 91.9 0 8.1 0 
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According to the linear regression formula(17), the matrix of weighted factors has   been evaluated : 

 

[Ɵ] =

[
 
 
 
 
 

𝟐. 𝟑𝟏𝟑𝟓 −𝟕. 𝟐𝟔𝟗𝟏  𝟎. 𝟓𝟎𝟖𝟕 𝟎. 𝟑𝟗𝟖𝟑 𝟔. 𝟓𝟑𝟓𝟐 −𝟐. 𝟕𝟑𝟗𝟕   −𝟎. 𝟓𝟕𝟓𝟒
𝟎. 𝟔𝟐𝟓𝟗    𝟐. 𝟒𝟗𝟓𝟕   𝟎. 𝟑𝟔𝟏𝟑 𝟎. 𝟑𝟗𝟑𝟐 −𝟏. 𝟏𝟏𝟖𝟏   𝟎. 𝟓𝟖𝟖𝟕      𝟎. 𝟑𝟏𝟎𝟓 

−𝟑. 𝟏𝟓𝟑𝟓
−𝟎. 𝟔𝟓𝟎𝟕
𝟏. 𝟐𝟑𝟓𝟐
𝟏. 𝟎𝟖𝟔𝟐

   𝟗. 𝟐𝟔𝟎𝟑
   𝟎. 𝟏𝟕𝟗𝟏
−𝟑. 𝟔𝟑𝟖𝟓
−𝟑. 𝟔𝟓𝟑𝟓

−𝟎. 𝟓𝟎𝟑𝟎 
−𝟎. 𝟑𝟐𝟓𝟓
𝟎. 𝟖𝟎𝟒𝟕

−𝟎. 𝟐𝟗𝟎𝟗  

−𝟎. 𝟎𝟑𝟓𝟕
−𝟎. 𝟎𝟐𝟓𝟔
𝟎. 𝟐𝟒𝟖𝟖
𝟎. 𝟏𝟓𝟏𝟏

−𝟖. 𝟓𝟗𝟕𝟗
𝟎. 𝟖𝟐𝟑𝟔
𝟐. 𝟕𝟐𝟕𝟐
𝟑. 𝟖𝟐𝟓𝟑

𝟒. 𝟓𝟐𝟓𝟓
−𝟎. 𝟒𝟑𝟑𝟓
−𝟏. 𝟎𝟖𝟓𝟒
−𝟏. 𝟔𝟔𝟏𝟏

 𝟎. 𝟕𝟓𝟖𝟓
  𝟎. 𝟕𝟗𝟐𝟑
−𝟎. 𝟐𝟗𝟑𝟗
−𝟎. 𝟐𝟖𝟑𝟑 ]

 
 
 
 
 

(𝒅+𝟏)𝒙𝒎

 
(28) 

 
 
 

The unknown normalized matrix of physical and mechanical properties can be evaluated from equation(18): 

[�̂̅�] =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝟎. 𝟔𝟕𝟗𝟕 𝟎. 𝟓𝟖𝟕𝟕 𝟎. 𝟗𝟖𝟗𝟕 𝟎. 𝟗𝟒𝟓𝟖
𝟎. 𝟔𝟖𝟖𝟐 𝟎. 𝟔𝟑𝟕𝟗 𝟎. 𝟗𝟗𝟏𝟓 𝟎. 𝟗𝟓𝟕𝟒
𝟎. 𝟔𝟖𝟖𝟐 𝟎. 𝟔𝟔𝟗𝟏 𝟎. 𝟗𝟖𝟔𝟑 𝟎. 𝟗𝟔𝟖𝟑

𝟎. 𝟎𝟓𝟐𝟎 𝟏. 𝟎𝟐𝟓𝟐 𝟎. 𝟒𝟖𝟖𝟎
𝟎. 𝟎𝟕𝟕𝟕 𝟏. 𝟎𝟏𝟏𝟖 𝟎. 𝟓𝟐𝟐𝟔
𝟎. 𝟏𝟒𝟓𝟓 𝟎. 𝟗𝟕𝟔𝟎 𝟎. 𝟓𝟕𝟓𝟐

𝟎. 𝟔𝟗𝟓𝟎 𝟎. 𝟕𝟏𝟓𝟒 𝟎. 𝟗𝟖𝟔𝟕 𝟎. 𝟗𝟕𝟗𝟖
𝟎. 𝟔𝟗𝟖𝟒 𝟎. 𝟕𝟓𝟒𝟏 𝟎. 𝟗𝟖𝟒𝟒 𝟎. 𝟗𝟗𝟎𝟗 
𝟎. 𝟔𝟎𝟕𝟒 
𝟎. 𝟔𝟏𝟕𝟑
𝟎. 𝟔𝟐𝟕𝟒
𝟎. 𝟔𝟑𝟖𝟗
𝟎. 𝟔𝟑𝟒𝟐
𝟎. 𝟓𝟏𝟓𝟗 
𝟎. 𝟓𝟑𝟎𝟓 
𝟎. 𝟓𝟒𝟑𝟔
𝟎. 𝟓𝟓𝟔𝟖
𝟎. 𝟓𝟕𝟎𝟎
𝟎. 𝟖𝟕𝟏𝟐
𝟎. 𝟗𝟐𝟑𝟓 
𝟎. 𝟗𝟓𝟗𝟓 
𝟎. 𝟗𝟗𝟓𝟖

𝟎. 𝟒𝟏𝟎𝟒
𝟎. 𝟒𝟔𝟓𝟐
𝟎. 𝟓𝟏𝟖𝟖
𝟎. 𝟓𝟕𝟕𝟑
𝟎. 𝟓𝟗𝟔𝟒
𝟎. 𝟏𝟖𝟓𝟓
𝟎. 𝟐𝟓𝟐𝟒
𝟎. 𝟑𝟏𝟒𝟒
𝟎. 𝟑𝟕𝟔𝟔
𝟎. 𝟒𝟑𝟖𝟔
𝟎. 𝟒𝟑𝟎𝟏
𝟎. 𝟒𝟏𝟏𝟕
𝟎. 𝟒𝟒𝟏𝟔
𝟎. 𝟒𝟕𝟎𝟒

𝟎. 𝟗𝟐𝟖𝟑
𝟎. 𝟗𝟑𝟏𝟒
𝟎. 𝟗𝟑𝟒𝟓
𝟎. 𝟗𝟑𝟗𝟎
𝟎. 𝟗𝟐𝟗𝟖
𝟎. 𝟖𝟓𝟎𝟓
𝟎. 𝟖𝟓𝟕𝟕
𝟎. 𝟖𝟔𝟑𝟓
𝟎. 𝟖𝟔𝟗𝟒
𝟎. 𝟖𝟕𝟓𝟐
𝟎. 𝟎𝟓𝟏𝟓
𝟎. 𝟎𝟔𝟖𝟎
𝟎. 𝟎𝟖𝟐𝟎
𝟎. 𝟎𝟗𝟓𝟗

𝟎. 𝟗𝟒𝟎𝟗
𝟎. 𝟗𝟓𝟐𝟔
𝟎. 𝟗𝟔𝟒𝟐
𝟎. 𝟗𝟕𝟓𝟗
𝟎. 𝟗𝟖𝟔𝟔
𝟎. 𝟗𝟑𝟒𝟕
𝟎. 𝟗𝟒𝟔𝟔
𝟎. 𝟗𝟓𝟖𝟓
𝟎. 𝟗𝟕𝟎𝟑
𝟎. 𝟗𝟖𝟐𝟐
𝟎. 𝟖𝟕𝟎𝟖
𝟎. 𝟖𝟖𝟑𝟒
𝟎. 𝟖𝟗𝟓𝟗
𝟎. 𝟗𝟎𝟖𝟒

𝟎. 𝟏𝟕𝟗𝟔 𝟎. 𝟗𝟓𝟖𝟏 𝟎. 𝟔𝟏𝟑𝟒
𝟎. 𝟐𝟑𝟎𝟔 𝟎. 𝟗𝟑𝟏𝟑 𝟎. 𝟔𝟓𝟖𝟖
𝟎. 𝟒𝟑𝟗𝟒
𝟎. 𝟒𝟓𝟓𝟖
𝟎. 𝟒𝟕𝟑𝟏
𝟎. 𝟒𝟖𝟏𝟎
𝟎. 𝟓𝟕𝟓𝟎
𝟎. 𝟗𝟑𝟎𝟑
𝟎. 𝟗𝟐𝟎𝟔
𝟎. 𝟗𝟐𝟎𝟐
𝟎. 𝟗𝟏𝟗𝟖
𝟎. 𝟗𝟏𝟗𝟒
𝟎. 𝟗𝟎𝟔𝟔
𝟎. 𝟗𝟔𝟏𝟏
𝟎. 𝟗𝟕𝟎𝟖
𝟎. 𝟗𝟖𝟏𝟓

𝟎. 𝟖𝟐𝟏𝟒
𝟎. 𝟖𝟏𝟐𝟖
𝟎. 𝟖𝟎𝟑𝟔
𝟎. 𝟕𝟗𝟗𝟓
𝟎. 𝟕𝟓𝟎𝟎
𝟎. 𝟓𝟔𝟑𝟎
𝟎. 𝟓𝟔𝟖𝟏
𝟎. 𝟓𝟔𝟖𝟑
𝟎. 𝟓𝟔𝟖𝟓
𝟎. 𝟓𝟔𝟖𝟕
𝟎. 𝟓𝟕𝟓𝟓
𝟎. 𝟓𝟒𝟔𝟖
𝟎. 𝟓𝟒𝟏𝟕
𝟎. 𝟓𝟑𝟔𝟏

𝟎. 𝟔𝟒𝟖𝟒
𝟎. 𝟔𝟕𝟗𝟔
𝟎. 𝟕𝟏𝟎𝟔
𝟎. 𝟕𝟑𝟖𝟐
𝟎. 𝟖𝟎𝟏𝟒
𝟎. 𝟖𝟓𝟏𝟕
𝟎. 𝟖𝟕𝟐𝟏
𝟎. 𝟖𝟗𝟔𝟏
𝟎. 𝟗𝟐𝟎𝟎
𝟎. 𝟗𝟒𝟒𝟎
𝟎. 𝟏𝟔𝟕𝟑
𝟎. 𝟏𝟔𝟗𝟏
𝟎. 𝟏𝟕𝟒𝟗
𝟎. 𝟏𝟖𝟎𝟔]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝒏𝒙𝒎

 (29) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 2. Graphical representation of mean absolute percentage error of physical and mechanical properties which is an 
indication of accuracy of direct problem model 

The unknown normalized matrix of phase composition and sintering temperature in case of inverse problem can be 
evaluated from equation(22): 
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10.000
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Error%

Mean Absolute Percentage Error(MAPE)  
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[�̂̅�] =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1.0080 0.7991 1.0207 0.5130 1.0386 −0.0241
0.9978 0.9373 0.9837 0.4488 0.9833 0.0207
0.9917
0.9689
1.0060
1.0144
1.0075
1.0019
1.0022
1.0234
0.9961
0.9950
0.9859
0.9887
1.0124
0.9937
1.0036
1.0178
0.9849

1.0077
1.0809
0.9536
0.7903
0.9070
0.9587
0.9777
0.8886
0.8756
0.9272
1.0120
0.9949
0.9522
0.9026
0.9375
0.9836
0.9889

0.9662
0.9473
0.9996
1.0050
0.9771
0.9643
0.9662
1.0031
0.9491
0.9392
0.9151
0.9277
0.9513
0.9736
0.9777
0.9852
0.9434

0.4599
0.5428
0.6274
0.6669
0.6076
0.6223
0.6879
0.8248
0.9535
0.9302
0.9087
0.9888
1.0825

−0.0003
−0.0024
0.0062

−0.0035

0.9766
0.9194
1.0208
1.0501
1.0011
0.9923
0.9956
1.0719
1.0076
0.9781
0.9560
0.9596
1.0489

−0.0026
−0.0015
0.0131

−0.0091

0.0212
0.0553

−0.0084
−0.0291
0.0126
0.0158
0.0129

−0.0417
−0.0051
0.0231
0.0360
0.0351

−0.0299
0.9962
1.0050
1.0048
0.9939 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  (30) 

 

    Figure 3. Graphical representation of root mean square error of phase composition and sintering temperature 

which is an indication of accuracy of inverse problem model 

 Figure 4. Graphical representation of Normalized root mean square error of phase composition and sintering temperature 
which is an indication of accuracy of inverse problem model. 

Table 11. This is an indication of external data of commercial zirconia (Superfectzir) that manufactured by Aidite company  . 

 

 

 

 

 

Sintering 

temperatur

e 

ο C 

wt.% of 

ZrO2 

 

wt.% of 

Y2O3 

 

 

wt.% of 

CaO 

 

 

wt.% of 

Al2O3 

 

 x1 x 2 x3 x 4 x 7 

Input composition 1550 92 7.4 0.05 0.05 

Normalized input 

composition 
0.9688 0.9608 0.7400 1.0000 0.0063 

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Sintering temperature %Wt percent
ofzirconia(ZrO2)

%Wt percent of
yttria(Y2O3)

%Wtpercent
ofAlumina(Al2O3)

%Wt percent of
calcia(CaO)

Error

Root Mean Square Error

0

0.1

0.2

0.3

0.4

0.5

Sintering
temperature

%Wt percent
ofzirconia(ZrO2)

%Wt percent of
yttria(Y2O3)

%Wtpercent
ofAlumina(Al2O3)

%Wt percent of
calcia(CaO)

Error

Normalized root mean square error(NRMSE)
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Table 12. This is an indication of mechanical prpperties  of commercial zirconia (Superfectzir) that manufactured by Aidite company resulted from our 

model . 

 

 

 

 

 

   

 
Discussion 

After a detailed analysis of the data preparation stage, it is 

observed that in Table 4 materials from TYPE16 to TYPE 

20 are rejected as their relative closeness is much smaller 

than 0.5, in Table 5 materials from TYPE 21 to TYPE 30 are 

rejected, in Table 6 material with TYPE 31 is rejected, finally 

in table 7, no materials are rejected as all the materials are 

approaches 0.5 or higher hence they converge to positive 

ideal solution, and at that case we claim that data is prepared 

in tables 8,9 and 10, and are ready to be submitted into 

machine learning model. After a detailed analysis of the 

matrix [Ɵ](26) that also indicated in table 13 in which values 

of positive numbers indicated that there is a direct 

proportional between inputs and outputs and values with 

negative numbers indicated that there is an inverse 

proportional between inputs and outputs, the following 

statements can be formulated. Value of 0.8236 indicates that 

an increase in yttria content significantly impacts an increase 

in cubic phase and therefore increases the translucency of 

dental crowns material, and also impacts a decrease in 

tetragonal phase, Value of -0.6507 indicates that an increase 

in yttria content impacts a decrease in flexural strength which  

corresponds to result of the study[2]. Value of -0.3255 

indicates that an increase in yttria content impacts a decrease 

in hardness which corresponds to the result of the study[3]. 

Value of 1.0862 indicates that an increase in Calcia content 

impacts an increase in flexural strength which corresponds 

to the result of the study[4]. Figure 2 indicates the test 

accuracy of the direct model in which the maximum value of 

mean absolute percentage error does not exceed 16% which 

proves the reliability of the direct model. Figure 3 indicates 

the test accuracy  of the inverse model in which the 

maximum value of root mean square error does not exceed 

0.06 and Figure 4 indicates the test accuracy  of the inverse 

model in which the maximum value of normalized root mean 

square error does not exceed 0.45 which proves the 

reliability of the inverse model5. We also use a commercial 

zirconia that its chemical composi-tion is indicated in table 

11, then we use our model to predict its properties and the 

predicted values are indicated in table12 and we use equation 

20 to predict the actual values that is also indicated in 

table12.  

 
Table 13. This is an indication of the matrix theta  

 

 
      

Filtered 

material 

TYPE 

Flexural 

strength 

MPa 

Fracture 

Toughn

ess 

Mpa.m0.

5 

Vickers 

Hardnes

s 

GPa 

Density 

Kg/m3 

Cubic 

Phase 

% 

Tetrago

nal 

Phase 

% 

Grain 

Size 

micron 

 y1 y 2 y3 y 4 y 5 y 6 y 7 

Normalized predicted 

properties 
0.6505 0.5170 0.9375 0.9757 0.5518 0.7621 0.7448 

MAPE 0.11957 0.15279 0.01852 0.00659 0.09745 0.02237 0.01517 

Accuracy 0.880 0.847 0.981 0.993 0.903 0.978 0.985 

Predicted Properties  780 6.72 14.81 5.92 27.59 72.40 0.74 

True properties 885.93 7.93 15.08 5.95 30.56 74.05 0.75 

[Ɵ] Dv1 Dv2 Dv3 Dv4 Dv5 Dv6 DV7 

 
Flexural 

strength (Mpa) 

Fracture 
toughness(Mpa

.m1/2) 
Hardness Density(g/cc) %cubic phase 

%tetragonal 
phase 

Grain size 
(micron) 

(X0)Y-INTERCEPT 2.3135 -7.2691 0.5087 0.3983 6.5352 -2.7397 -0.5754 

Sintering temperature 0.6259 2.4957 0.3613 0.3932 -1.1181 0.5887 0.3105 

%Wt percentage of 

zirconia(ZrO2) 
-3.1535 9.2603 -0.5030 -0.0357 -8.5979 4.5255 0.7585 

%Wt percentage of yttria(Y2O3) -0.6507 0.1791 -0.3255 -0.0256 0.8236 -0.4335 0.7923 

%Wt percentage of 

Alumina(Al2O3) 
1.2352 -3.6385 0.8047 0.2488 2.7272 -1.0854 -0.2939 

%Wt percentage of Calcia(CaO) 1.0862 -3.6535 -0.2909 0.1511 3.8253 -1.6611 -0.2833 
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Conclusions 

A comprehensive integrated material selection approach 

has been developed according to the research results. It is 

based on the comprehensive application of FUZZY-

ENTROPY and FUZZY-TOPSIS methods as 

optimization techniques for data preparation and 

regression analysis as a supervised machine learning 

method for data prediction. Particularly, analytical 

dependencies for evaluating the physical and mechanical 

properties of dental crown material have been obtained. 

The proposed approach has been analyzed qualitatively 

regarding the impact of phase composition elements and 

sintering temperatures on physical and mechanical 

properties. The quantitative criteria for proving the 

reliability of the proposed approach have also been 

calculated (i.e., mean average percentage error and root 

mean square error), and the following conclusions were 

extracted from the study. 

1-3Y-PSZ(from TYPE1 to TYPE 5),4Y-PSZ(from 

TYPE6 to TYPE10),5Y-PSZ(from TYPE 11to 

TYPE15), and CSZ(from TYPE32 to TYPE 35) are 

promising bioceramic materials and have the best 

physical, mechanical and aesthetic properties according 

to the direct model. 

2-Direct model and Inverse model will provide initial 

support for researchers to do experimental work on dental 

ceramics especially materials that are accepted by our 

model, and that will save money and cost. 

3- A direct model will help researchers monitor the 

physical and mechanical properties of certain dental 

ceramics in case of feeding it with the composition of 

materials and that will help them reach faster to optimum 

dental materials suitable for manufacturing conditions 

and the demand of customers. 

4- The inverse model will also help researchers to 

determine the scope of dental ceramic materials 

composition in case of feeding the model with physical, 

mechanical, and aesthetic properties suitable for 

manufacturing.    

After using our model for dental crown materials design, 
it is proposed to use the prepared material for slurry-
based ceramic printing not for powder-based ceramic 
printing to avoid thermal stresses on bioceramic prepared 
material, then after using slurry-based ceramic printing, 
it’s advisable to put the following points in our 
consideration: 

  The slurry-based ceramic materials should be 

homogenous by ball milling with a particle size of 

the range(0.2:0.5)micron 

  The solid content of ceramic slurry should be 

greater than 40vol% to ensure minimum porosity 

and maximum flexural strength 

 Viscosity of suspension shouldn’t exceed 3 pa. sec 

as higher viscosities prevent the recoating of 

homogenous layers 

 Additive manufacturing process parameters such 

as layer thickness, printing speed, laser power  

should be optimized to get an  excellent quality 

for manufactured part 

 A printed part should be characterized to ensure 

that it achieves the expected dimensional 

accuracy, surface quality, biocompatibility, 

mechanical properties, delivery time, and 

productivity. 

Although our approach suffered from a lack of 
experimental work, it could be a promising initial step for 
researchers in bioceramics as a powerful decision making 
that could help them to prepare an excellent bioceramic 
powder material for additive manufacturing. Overall, the 
developed approach is helpful for dental manufacturers 
to optimize dental crown material.

              

  Nomenclature 

EWM   Entropy Weight Method TOPSIS 
Technique for Order Preference by  

similarity to ideal solution 

�̅�𝑇  

Transpose of  normalized feature matrix  

of phase composition and sintering  

temperature 
Ŷ̅ 

The unknown matrix of physical and 

 mechanical properties 

�̅�𝑖,𝑗  
Normalized feature matrix of phase 

composition and sintering temperature 
Ɵ Weighted factors of machine learning model 

𝐸𝑗  The entropy value  of the jth index 𝑠𝑖
+ Distance between alternatives (samples) and the PIS 

𝑀𝐴𝑃𝐸𝑗  
Mean Average Percentage Error of 

 j indicators 
𝑅𝑀𝑆𝐸𝐾 Root Mean Square Error of K attributes 

𝑁𝑅𝑀𝑆𝐸𝐾  Normalized Root Mean Square  [Ɵ] Matrix of weighted factors 
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Error of K attributes 

𝑃𝑖𝑗  
standardized value of the ith sample 

 in jth indicator 
 𝐴𝑖 Alternative of ith sample 

𝑊𝑗  Weight of Jth indicators 𝐶𝑖
∗ The relative closeness of ith samples 

�̂�  The predicted label matrix �̂̅� 
Expected normalized values of material  

compositions and sintering temperature  

𝑥𝑖𝑗  
values of material compositions and 

 sintering temperature 
�̅�𝑖,𝑗 

Normalized label matrix of physical and 

 mechanical properties 

𝑦𝑖𝑗  
values of physical and mechanical  

properties 
𝑠𝑖

− Distance between alternatives (samples) and the NIS 

d  
Number of attributes (material 

 composition elements) 
𝑟𝑖𝑗 Elements of  normalized decision matrix 

i  Counter of n samples(i=1:n) V weighted normalized decision matrix 

j  Counter of m indicators(1:m) 𝑉+ The vector of  positive ideal solution 

k  Counter of d attributes(1:d) 𝑉− The vector of  negative  ideal solution 

m  Number of indicators(physical properties) R The  normalized decision matrix 

n  Number of samples D The evaluation matrix 

NIS  Negative Ideal Solution PIS Positive Ideal Solution 

CSZ  Calcia stabilized zirconia 3Y-PSZ (3%mol yttria)partially stabilized zirconia   

4Y-PSZ  4%mol yttria)partially stabilized zirconia   5Y-PSZ (5%mol yttria)partially stabilized zirconia   

YSZ  Yttria Stabilized Zirconia m Number of indicators 

n  Number of samples   
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