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Path Planning is critical for a mobile robot (MR) to navigate safely towards its 

target position, without collision with the surrounding obstacles. There are many 

aspects that need to be considered in path planning; computation time, path 

smoothness, and path length. The Artificial Potential Field (APF) approach is 

popular for solving the path planning problem. It is a unique approach that has a 

simple computation model, which makes it a good choice for real-time and 

dynamic environments. The principle of the APF approach is based on attracting 

the MR to its target position and repelling it away from obstacles. The APF 

approach has some inherent limitations, such as local minima and path oscillations 

in narrow passages. This paper reviews the traditional APF approach and several 

modified versions that aimed to overcome these limitations. A brief comparison is 

made to give an overview of the performance of each modified version. In addition, 

the main advantages and disadvantages are discussed to highlight the parameters 

affecting the performance of the modified methods. 
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1. Introduction 

Mobile Robots (MRs) have been included in 

different applications in recent decades [1]. Such 

applications cover wide areas such as military [2], 

security [3], industry, and indoor environments to 

execute critical tasks that are dangerous or menial 

[1]. Path planning is a fundamental function to enable 

MRs to safely navigate through the working 

environments autonomously. The difficulty of path 

planning increases in complex environments. 

The main focus in this article is on traditional 

approaches rather than Learning-based approaches, 

which use machine learning to learn path planning 

either from data or by imitation. Traditional Path 

planning approaches can be categorized into classical 

approaches and heuristic approaches [4-6]. Heuristic 

approaches like Genetic Algorithm (GA)[7], Particle 

Swarm Optimization (PSO)[8], Bacteria Foraging 

Optimization (BFO)[9], and Ant Colony 

Optimization (ACO)[10] are expected to perform as 

well as, or better than, classical approaches like Cell 

Decomposition (CD)[11], Probabilistic Roadmap 

(PRM)[12], Rapidly-Exploring Random Tree 

(RRT)[13], Visibility Graph (VG)[14], Voronoi 

Diagrams(VD)[15], and Artificial Potential Field 

(APF)[16]. However, due to the computational 

complexity of most heuristic approaches, classical 

approaches are still preferable in many applications 

that are time sensitive and require fast real-time 

actions [17, 18]. 

Amongst classical path planning approaches, APF 

is gaining popularity in obstacle avoidance 

applications for MRs and manipulators. The APF 

approach introduced by Khatib [16] is based on the 

concept of introducing attractive and repulsive 
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potential forces. The MR is attracted to its target 

position and is repulsed away from the obstacles. 

This approach is attractive because of its simplicity 

[19]. It enables the MR to maneuver obstacles while 

following its path to the target position. The APF 

approach is deterministic in its nature, which leads to 

a repeatable solution for every run of the algorithm 

with the same input data [20]. This feature is not 

available in heuristic methods, which usually give a 

different solution for every run. 

APF has some inherent limitations that are 

independent of its implementation, which are as 

follows [21]: trap situations due to local minima 

(cyclic behavior), no passage between closely spaced 

obstacles, oscillations in the presence of obstacles, 

and oscillations in narrow passages. 

Local minima problem is a common limitation of 

APF [21]. All modified versions tried to solve local 

minima by one of two approaches. The first approach 

is by modifying the field equations and the second 

one by using extra integrated algorithm. In first 

approach, the field equation is modified to guarantee 

that there is only one global minimum at the target 

position [22]. It usually adds additive or 

multiplicative terms of relative distance, velocity, or 

acceleration of the target to the repulsive field 

equation. In second approach, the mentioned studies 

included five common methods integrated with APF 

so that the MR can escape from local minima 

positions. These methods are Virtual obstacles / 

Obstacle filling [23, 24], Wall following / BUG [25-

27], Sub-goal/ Virtual targets [28-33], Spin fields 

[23, 33-37], and Regular Hexagon Guided (RHG) 

[38]. 

This study analyzes a total of 24 research articles 

published between 1985 and 2022. The aim is to 

highlight the contribution of the existing literature on 

the APF approach with a particular focus on the 

modified field equation. This study can be useful to 

researchers and practitioners working in the field of 

robotics, automation, and artificial intelligence, who 

are interested in understanding the latest 

advancements in mobile robot path planning using 

the APF approach. 

The remainder of this paper is organized as 

follows: in section 2, the path planning problem is 

defined. In section 3, the conventional APF approach 

is described. In section 4, some modified versions of 

APF are proposed. In section 5, a brief comparison is 

given for each modified version included in this 

paper and a summary is given with a recommended 

roadmap for APF implementation in different 

scenarios. 
 

2. Path planning 

The path planning problem can be described as 

follows: given an MR and its working environment, 

the MR searches for an optimal or suboptimal path 

from the initial position to the target position 

according to a certain performance criterion [39]. 

One of the key issues in path planning [40] is that the 

path should be safe and free of any collision with 

different environment components. All MRs 

implement some sort of collision avoidance, ranging 

from basic algorithms, which detect the obstacle and 

stop the MR, to complex algorithms, which enable 

the MR to maneuver obstacles while moving towards 

the target position. The need for a safe path arises 

when the environment includes pedestrians. There 

are five main components in the path planning 

process [5, 41, 42]: 

 Perception: the MR receives data from its 

installed sensors to extract meaningful 

information about the environment. 

 Localization: the MR determines it position 

within the environment map. 

 Path Planning: the MR searches and creates a set 

of ordered configurations that connects the start 

position to its target.  

 Path Generation: the MR tries to obtain a safe 

and smooth path from the discrete configurations 

obtained from the planning step. 

 Path Tracking: the MR regulates its motion to 

follow the generated path while following the 

environment safety measures. 

Path tracking is a complementary task to path 

planning, which determines how to move the MR in a 

way that is acceptable for its mechanical limitations 

such as steering rate and acceleration. Path tracking is 

used when the MR is applied in a dynamic 

environment because it needs to re-plan its path when 

it faces a dynamic obstacle while tracking its initially 

generated path. 

There is an abundance of research on path 

planning, which has a critical role in MR 

applications. There are two main approaches in MR 

path planning: (i) global path planning or off-line 

path planning, and (ii) local path planning or on-line 

path planning [5, 43, 44]. A global path planner 

usually generates a high-level path based on its prior 

knowledge about the environment. It can fit with 

static and structured environment that can be mapped 

easily and once. Meanwhile, a local path planner 
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does not need a predefined map of the environment. 

It usually gives a high-resolution low-level path over 

a portion of the total path based on data processed 

from the installed sensors. It works effectively in 

dynamic environments where the map is 

continuously changing [5]. However, local path 

planning becomes inefficient when dealing with 

environments where the target position is a long 

distance away from the initial position. 

For a partially known environment, which 

contains known and static obstacles in addition to a 

set of unknown obstacles, an initial map is provided 

for the static obstacles like walls, assets and doors. In 

this case, an initial full path can be planned using a 

global planner [17]. Once the MR starts moving, a 

local planner guides the MR along the path and 

avoids dynamic and unknown obstacles that may face 

the MR. 

There are four essential trade-offs that should be 

considered in a path planning algorithm [45]. The 

first is optimization, which ensures that the generated 

path is optimal or suboptimal in terms of distance, 

travel time, smoothness, and so on. The second 

criterion is completeness, which ensures that the 

planning algorithm is guaranteed to provide all 

possible solutions for the path at hand. The following 

is accuracy/precision. This criterion is very crucial to 

driving all states from the initial position to the target 

position. The last criterion is the algorithm execution 

time. The objective of this criterion is to guarantee 

the best-case setting for handling a given problem in 

reasonable time that fits the application time 

constraints. 

3. Conventional APF approach 

APF was first introduced by Khatib [16] based on 

the artificial fields, which attract the MR towards its 

target position while repelling it away from obstacles. 

The total potential field applied on the MR is 

calculated by: 

                         , (1) 

where           is the total potential field applied on 

the MR at position  ,      is the target attractive 

field, and      is the total repulsive field by 

obstacles. The attractive potential field at position   

is calculated by: 

        
 

 
         , (2) 

where    is the attractive proportional constant, and 

   is the target position. Finally, the repulsive 

potential field at position   is calculated by: 

        ∑       , (3) 

where       is the repulsive field exerted by the 

obstacle o, and it is calculated by: 

      {
 

 
  (

 

 
 

 

  
)
 

    

     

, (4) 

where   is the shortest distance between the MR and 

obstacle o, and    is the distance of influence for the 

obstacle. The force applied to the MR is calculated 

by: 

             , (5) 

The flowchart for path planning using the 

conventional APF approach is shown in Fig. 1. 

 

Fig. 1: shows the flowchart for path planning using the 
conventional APF approach, where      is the target 
attractive force, and      is the total repulsive force 

exerted by obstacles. 

 The conventional APF has some inherent 

limitations such as trap situations due to local 

minima, no passage between closely spaced 

obstacles, and path oscillations. Traps are generated 

due to the equilibrium between repulsive and 

attractive field components as described in Fig. 2(a). 

When both fields have the same value with opposite 

direction, the resultant force applied on the MR 

becomes zero. In this case, the MR stops in this 

position. The no-passage problem happens when 

there are two closely spaced obstacles facing the MR 

with the target position on the other side. In this case, 

the resultant repulsive field pulls the MR in the 

opposite direction of the target as shown in Fig. 2(b). 

In narrow passages, the path tends to have 

oscillations because of the continuous change in 
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repulsive field of each passage side when the MR 

moves towards or away from that side as shown in 

Fig. 2(c). 

4. Modified versions of APF approach 

The modifications to the APF method can be done 

to one or more of the following factors: environment 

representation, dealing with dynamic target and 

obstacles, field equations, and hybridization with 

another algorithm. 

In terms of environment map representation, APF 

approaches take one of two representations; grid map 

and geometric based representation. Grid map fits in 

unknown environments where the mapping process is 

simultaneous with the path planning. Borenstein and 

Koren [25, 40] used the certainty grid method to 

handle the sensors inaccuracy problem. Grid maps 

also fit for unstructured environments. Meanwhile, 

geometric based representation fit for structured 

environments, where environment components had 

uniform shapes and their positions were known. It 

saved more time in path planning because each 

obstacle was taken into consideration once. 

Meanwhile, grid maps dealt with each cell of the 

obstacle as a separate repelling source. Time 

complexity in grid maps proportionally increased 

with the map resolution. 

The target and obstacles in the working 

environment can be static such as walls, movable 

such as chairs and bags, or dynamic such as other 

MRs and pedestrians. The majority of proposed 

methods dealt with static environment to focus on the 

planning process and did not investigate issues 

related to map building or monitoring environmental 

changes. However, real-life applications include 

moving obstacles and pedestrians. Hong et al. [20], 

Lazarowska [29], Fan et al. [38], and Lu et al. [46] 

proposed methods that handled the moving obstacles 

scenario. Meanwhile, Ge and Cui [35], Huang [47], 

and Yin et al. [19] dealt with moving obstacles and 

tracked dynamic targets. For simplicity, all dynamic 

obstacles were considered to be measurable and 

known to focus the comparison on the planning 

process and obstacle avoidance strategy. 

Borenstein and Koren [48] introduced a real-time 

map building method using on-board range sensors 

called Histogram In-Motion Mapping (HIMM). 

HIMM represented the environment as a two-

dimensional array of cells. Each cell value contained 

a certainty value for corresponding position to be 

occupied by an obstacle and the repulsive force was 

calculated by: 

     ∑             , (6) 

where      is the total repulsive force, and           

is the repulsive component exerted by cell at position 

      calculated by: 

          
           

       
 * 

     

      
 ⃑  

     

      
 ⃑ +, (7) 

where        is the certainty value of cell at position 

     . 
This work was followed by a proposed method for 

real-time obstacle avoidance called Virtual Force 

Field (VFF) by Borenstein and Koren [25]. The main 

advantage of VFF was that it allowed adding and 

retrieving data on the fly, enabled easy integration of 

multiple sensors, and overcame the shortcomings of 

range sensors, like poor directionality, frequent 

misreadings, and specular reflections. Some dynamic 

enhancements were also introduced by Borenstein 

and Koren [25] to guarantee path smoothness. These 

enhancements were low pass filter for steering 

control and damping factor for linear velocity when 

the MR faces an obstacle. More investigation was 

done to overcome local minima problem with the use 

of the Wall Following method (WF). 

Borenstein and Koren [40] proposed a two-stage 

data reduction method called Vector Field Histogram 

(VFH), which was applied on the environment 

certainty grid map mentioned by Borenstein and 

Koren [48]. In the first stage, VFH converted the 

histogram grid data into a one-dimensional polar 

histogram around the MR by: 

   

(a) (b) (c) 

Fig. 2: Inherent Limitations of the conventional APF 

approach; (a) shows local minima due to field equilibrium, 

(b) shows two closely separated obstacles repelling the MR 

away from the target, and (c) shows path oscillations in 

narrow passages. 
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   ∑         , (8) 

where   is the polar obstacle density,      is the 

magnitude of obstacle vector cell      , and the sector 

number k is established by: 
 

     (
    

 
), (9) 

where      is the direction from active cell       and 

the MR, and   is the angular resolution such that the 

number of sectors            is an integer. 

In the second stage, a steering control action was 

calculated based on the sector with lower polar 

obstacle density. This method enabled the MR to 

navigate in narrow passages and closely located 

obstacles, which is a main shortcoming of the 

conventional APF approach. 

Hou and Zheng [49] proposed a hybrid path 

planning method based on hierarchical hexagon cell 

decomposition and APF. A potential value was 

calculated for each cell so that the MR can efficiently 

select the next cell. The heuristic value of a cell at 

position q was calculated by: 
 

     ∑
  

  
           , (11) 

where   is a scaling factor, and   is the angle between 

the line connecting the target position and the MR 

and the direction of motion of the MR. 

Lazarowska [20, 50] introduced a discrete 

artificial potential field method. The map was 

represented as two-dimension grid with potential 

value for each cell based on its distance from the 

target and neighbor cells’ values as follows: 

    

{
 
 

 
 

                     

            
   

 

           
    

 
     

 (11) 

where n is the number of horizontal cells, and m is 

the number if vertical cells. 

A path optimization method was applied on the 

resulting discrete path configurations to make the 

path smoother and shorter while keeping it free from 

collisions. The path optimization was based on an 

iterative elimination of unnecessary cells belonging 

to the collision-free path. 

Ge and Cui [22] modified the potential field by 

adding the relative distance between the MR and its 

target to the repulsive field, which can be described 

as follows: 

      {

 

 
  (

 

 
 

 

  

)
 

              

         

 (12) 

where a is a positive constant. 

This modification made one global minimum at the 

target position and helped to solve the problem of 

non-reachable targets with obstacles nearby GNRON. 

All free path local minima were eliminated by 

carefully tuning the APF parameters. Sfeir et al. [36] 

and Wang et al.[23] expressed the relative distance 

between the MR and its target in an exponential form 

to reduce the distortion of repulsive field when the 

MR is far from the target, which can be described as 

follows: 

      

 {
 

 
  (

 

 
 

 

  
)
 

     
(     )

 
 (     )

 

          

         

, 
(13) 

where         is the coordinate of the MR, and R is 

radius of the MR. 

Ge and Cui [35] proposed a potential field 

approach to work within a dynamic environment in 

which both the target and the obstacles were moving. 

The used potential function took into consideration 

the relative velocity between the MR and the target, 

and also between the MR and the obstacles, which 

can be described as follows: 

            ‖    ‖    ‖    ‖  (14) 

where    is velocity attraction proportional constant, 

      are the position and velocity of the MR 

respectively, and   and   are positive constants. 

          (
 

         
 

 

  

) (15) 

when                and      , 

otherwise     , where     is the relative velocity 

between the MR and obstacle o, and         is the 

distance travelled by the MR when decelerating by 

     and is calculated by 
   
 

     
  

The resulting force was calculated as the negative 

gradient of position and velocity potential. Such force 

was translated into a steering control action 

depending on the MR configuration. Huang [47] 

introduced a velocity planning for the MR to follow 

the moving target. The velocity planning provided 

both speed and direction control for the MR to track 

the moving target while avoiding the moving 

obstacles. Yin et al. [19] included the relative 

acceleration of the MR with regard to both the target 

and the obstacles in the potential field equations, 

which can be described as follows: 
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               ‖    ‖    ‖    ‖ 

   ‖    ‖  
(16) 

where    is the acceleration attraction proportional 

constant, and c is a positive constant. 

              (
 

 
 

 

  

)
 

      

       

(17) 

where     is the relative acceleration between the 

MR and obstacle  .   and    are two positive scaling 

factors. 

Three scenarios when tracking a moving target were 

discussed by Yin et al. [19]; hard landing, semi-soft 

landing, and soft landing. For simplicity, the local 

minima problem was handled by waiting until the 

dynamic environment changes its potential, otherwise 

the WF method was used. Fan et al. [38] proposed a 

path planning method that was adaptable for static 

and dynamic environments. For dynamic 

environment, the method considered the spatial 

location and in addition the relative velocity of 

moving obstacles. For static environment where a 

local minima problem most probably occurred, the 

RHG method was used to escape from this trap. 

The virtual obstacle concept was introduced by 

Park and Lee [24] to escape local minima positions. 

When the MR was trapped in a local minimum along 

the path, a virtual obstacle was generated at this 

position to repel the MR away from it with repulsive 

field calculated by: 

           

 {
  

 

|    |
 
    |    |     

    |    |    

  
(18) 

where    is the repulsive field coefficient of virtual 

obstacle,    is the local minimum position, and    is 

the new filling potential distance. 

Zou and Zhu [31] proposed a navigation 

algorithm based on the potential field approach with 

global path generation capability. When the MR 

encountered a local minimum or danger location, the 

algorithm generated a virtual target that replaced the 

actual target. After the MR reached the virtual target 

position, it continued its journey to the actual target 

position.  

Kim [28] modified the total potential field 

equation by using additive and multiplicative 

structure of attractive and repulsive fields, which can 

be described as follows: 

          
 

  
                 (19) 

 

       (   
 
‖    ‖

 

  
 

) (21) 

 

     ∑  (   
 
‖    ‖

 

  
 

)

 

 (21) 

where       are correlation distance for obstacle 

avoidance and the target distance respectively. 

The trap situation was detected by Kim [28] when 

four conditions were satisfied, which can be 

described as follows: 

|      |       

|   ∑   
 |       

|    |          

|       |     

(22) 

where                 are positive constants close 

to zero,    is the angle between the MR and the 

target, and    is the angle between the MR and 

obstacle o. 

Hong et al. [29] introduced a two-stage planner. It 

was based on two procedures; sub-goal generator and 

inner re-planner. The potential field was integrated as 

the evaluation of MR configuration. Yingkun [32] 

simplified the virtual target generation by randomly 

selecting a position in the neighborhood. Di et al. 

[33] applied the virtual target concept along with left 

turning method to escape from the local minimum 

position. 

Zhang et al. [26] proposed a new method that 

enabled the MR to change its behavior based on 

online sensors data. These behaviours were APF-

based obstacle avoidance, goal seeking, and WF. The 

MR started to navigate based on APF to avoid 

obstacles. When it was trapped in a local minimum, it 

switched to Goal-Seeking behavior. In Goal-Seeking 

behavior, the MR neglected the repulsive field and 

moved in a straight line to the target. When there was 

an obstacle between the MR and the target, the MR 

switched to WF behavior. In WF, the MR followed 

the contour of the facing obstacle until it bypassed 

the trap position. In this case, the MR turned back to 

move by ordinary APF behavior. The flowchart of 

this algorithm is shown in Fig. 3. 

94



EIJEST Vol.44 (2023) 89–98 

 

 

Fig. 3: Flowchart of behavior switching of the MR 

proposed by Zhang et al. [26]  

 Sfeir et al. [36] introduced a rotational field for 

obstacles to overcome the local minima problem and 

reduce the oscillations that resulted when the MR 

was too close to the obstacle. Instead of repelling the 

MR away from the obstacle, the repulsive field 

guided the MR along the obstacle contour until it 

passed that obstacle and then followed its journey to 

the target. Wang et al. [23] added a rotation matrix to 

the attractive field in local minimum position. This 

rotational field helped to overcome the equilibrium of 

potential fields and repel the MR from the position it 

got stuck at. 

Mei et al. [27] introduced a hybrid model based 

on Bug algorithm [51, 52] with APF to enable the 

MR to escape from local minima positions. When the 

MR got stuck in a local minimum, it switched to the 

Bug-behavior and searched for an obstacle boundary 

to follow until it escaped that local minimum. 

The APF approach was used with other robotic 

systems such as autonomous driving and unmanned 

aerial vehicles (UAVs). Lu et al. [46] proposed a 

hybrid planner based on the potential field and 

sigmoid curves. The potential field was used to 

determine the parameters to generate a sigmoid path, 

which aimed to achieve both safety and smoothness 

for autonomous driving. Zhang et al. [34] introduced 

a multi (UAV) formation control system. A Leader-

Follower strategy was implemented with an 

independent obstacle maneuver for each UAV. The 

obstacle avoidance was based on a spin field for the 

obstacle with angle depending on the angel between 

the robot-target and the robot-obstacle vectors. Souza 

et al. [37] applied a 3D rotational operation on the 

repulsive field of each obstacle so that the MR can 

determine its rotation vector. The spin vector was 

calculated from the vector multiplication of the robot-

target and the robot-obstacle vectors. 

5. Brief comparison 

The following table includes a comparison 

between the studies mentioned in the literature 

section to show the contribution of each approach.
   

Table 1: Comparison between modified versions of APF approach. 

Article Year 

Environment 

/Obstacles 

Representation 

Moving 

obstacles (O) / 

target (T) 

Integrated method 

Modified Field Equation 

Relative (p, 

v, a) of 
target 

included in 

Urep 

Relative (v, 

a) of 
obstacle 

included in 

Urep 

Spin 

Field 

[25] 1989 Grid - Wall Following - - - 

[40] 1991 Grid  - - - - - 
[49] 1994 Hex Grid - Cell Decomposition - - - 

[22] 2000 Rectangles - - p - - 

[35] 2002 Rectangles O, T - p, v v yes 
[24] 2003 Grid - Virtual Obstacle - - - 

[31] 2003 Rectangles - Virtual Target - - - 

[47] 2009 circles O, T - p, v - - 
[19] 2009 Point O, T - p, v, a v, a - 

[28] 2009 circles - Virtual Target p - - 

[29] 2010 Rectangles O RRT/DRM with Virtual Target - - - 
[26] 2010 Grid - Wall Following p - - 

[36] 2011 Rectangles - - p - yes 

[27] 2013 rectangles - Bug algorithm p - - 
[23] 2017 circles - Virtual Obstacle p - yes 

[32] 2018 arbitrary - Virtual Target - - - 
[34] 2018 Cylinders - - p, v - yes 

[20] 2019 Grid O Path Optimization Algorithm - - - 

[50] 2019 Grid - Path Optimization Algorithm - - - 
[38] 2020 circles O Regular Hexagon Guide p, v v - 

[33] 2020 Grid - Left Turning/ Virtual Target - - yes 

[46] 2020 Car / lane O Sigmoid Curve p, v - - 
[30] 2021 Circles - Dynamic window/ Virtual Target p - - 

[37] 2022 cubes - - p - yes 
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From the various modified versions of APF, each 

approach has its own advantages and disadvantages 

regarding the local minima problem and the quality 

of generated path. 

Map representation is a main factor that affects 

the path planning process. Grid maps and geometric 

based representation are both used in the mentioned 

studies. Grid maps are suitable for environments with 

non-uniform obstacles. However, they are time 

consuming because the repulsive filed for each 

obstacle is calculated as the summation of the 

repulsive fields generated by each cell occupied by 

that obstacle. High resolution grid maps require more 

computation time. The cell decomposition [49] 

method helps to minimize the number of cells that 

represent the obstacle by using iterative 

decomposition with variable-size hexagonal cells. 

Meanwhile, geometric based representation is 

suitable for structured environments. Each obstacle is 

represented as a uniform shape and is considered as a 

single source of repulsion. The challenge in 

geometric representation is the computation of the 

nearest point between the MR and the obstacle. 

The field equations, (2) and (4), are modified so 

that there is only one global minimum at the target 

position. The modified equations take into 

consideration the relative distance between the MR 

and the target either in a simple linear form as in 

(12), or in an exponential form as in (13), (21) and 

(21). 

The discussed studies include five common 

methods integrated with APF to solve the local 

minima problem. These methods are Virtual 

obstacles / Obstacle filling [23, 24], Wall following / 

BUG [25-27], Sub-goal/ Virtual targets [28-33], Spin 

fields [23, 33-37], and RHG [38]. Virtual obstacles 

and obstacle filling methods try to generate extra 

potential fields in a trap position to repel the MR and 

mark this position as occupied so that the MR cannot 

be trapped again. Wall Following and BUG methods 

depend on using the obstacle boundary as a guide for 

the MR to walk along until the MR escapes the trap 

and then resumes its main path to the target. Sub-goal 

and virtual targets replace the main target position 

with another to change the balance in the resultant 

potential field and guide the MR to a position where 

it can continue its path to the main target. Spin field 

introduces a good solution in densely cluttered 

environments because it guides the MR along the 

obstacle contour rather than repelling it away. The 

RHG method is based on cell decomposition and 

generates a hexagon path to maneuver the facing 

obstacles that caused local minimum position. 

6. Conclusion 

This paper summarizes various modified versions 

of the AFP approach for the path planning problem of 

MRs. AFP is a unique approach since it is simple and 

requires less computational time. However, AFP 

suffers from local minima problem, which causes a 

robot to trap at a particular position before reaching 

the target position. Modified versions of AFP 

approach addressed the local minima problem, each 

with its own advantages and disadvantages. 

Nevertheless, the research on AFP has not been fully 

explored and is still open especially in addressing the 

local minima problem. 
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