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Thermal Friction drilling (TFD) process is a non-traditional, hole forming process 

that produces bushing without the formation of chips. The TFD is generally used to 

create a bushing on sheet metal, tubing, or/and thin-walled shapes for joining parts 

in an easy and effective way. In the present works, the AA6082 aluminium alloy 

sheets were drilled using TFD using different process variables, namely, the tool 

rotational speed (TRS), tool feed rate (TFR) and the tool conical angle (TCA). The 

influence of the abovementioned variables on the hole dimensional characteristics 

i.e., the hole diameter (HD), the bushing height (BH), and the bushing thickness 

(BT) were examined. The regression analysis and artificial neural network (ANN) 

approaches were applied to predict the hole dimensional characteristics. The results 

revealed that the developed ANN models were successfully used to predict the hole 

dimensional characteristics. While the linear regression models failed to the hole 

dimensional characteristics with an acceptable accuracy. The linear regression and 

ANN models for predicting the dimensional characteristics showed maximum mean 

average percentage error (MAPE) values of 46.30% and 16.46%, respectively. 
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1. Introduction 

The thermal friction drilling (TFD) is a hole shaping 

process in metallic sheets [1,2]. The process uses the 

heat generated due to the friction between the 

workpiece and the rotating tool to produce the holes. 

During this process, there is no cutting fluid or 

lubricant is used. The TFD process has several 

applications in automotive industries such as in 

exhaust system parts, seat frame, fuel rail, seat 

handle, oxygen sensor and foot pedal [3,4]. 

Several TFD process parameters can affect the 

quality of the manufactured hole, namely, shape and 

geometry of drilling tool, workpiece and tool material 

properties, spindle speed, feed rate, and the thickness 

of workpiece [5]. The selection of proper values of 

these process parameters is very critical to produce 

enough heat needed to soften the workpiece materials 

and obtaining good quality holes. The quality of the 

drilled holes can be evaluated using several 

measurements like the hole diameter, height and 

thickness of bushing, surface roughness of the hole 

surface, and the formation of crack and damage in 

bushing. 

There are few investigations were reported on 

the modelling and optimization of the TFD process 

variables [6-12]. In these investigations, several 

modelling and optimization techniques were used, 

typically, grey relation analysis (GRA), artificial 

neural networks (ANN), Taguchi design, fuzzy logic, 

…etc.]. For example, Sushant and Vinayak [7] 
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developed relationships using regression analysis 

between temperature developed in TFD and three 

input TFD process parameters, typically, 

temperature, thermal stress, and hardness as a 

function of material type, speed, and feed rate. 

Pantawane and Ahuja [9] studied the effect of TFD 

process parameters, namely, the rotational speed, 

feed rate and drilling tool diameter on the responses, 

namely, the dimensional error and surface roughness 

of the bush for AISI 1015 steel. The response surface 

methodology (RSM) was adopted to develop an 

empirical model for the responses as a function of 

TFD process parameters. Kanagaraju et al. [10] 

adopted the Taguchi approach to optimize and 

determine the influence of the TFD process variables 

of 6061-T6 aluminium alloys. Relationships between 

thrust force and TFD process variables was attained 

for the thrust force. Rajesh et al. [12] developed a 

predictive model for the predicting the bushing length 

using a feed-forward ANN based on experimental 

data. The optimization process was performed by 

implementing a genetic algorithm under constraint 

limits to maximize the bushing length. Moreover, a 

confirmation test was performed with the intention to 

compare the optimal value and its corresponding 

bushing length predicted by the genetic algorithm. 

Good agreement was noticed between the 

experimental and the predicted values.  

In the present investigation, holes were drilled in 3 

mm sheets made from AA6082 aluminum alloys 

using TFD process. The influence of the TFD process 

variables, typically, the TRS, TFR and TCA on the 

hole dimensional characteristics, including the HD, 

BH and BT were investigated. Regression and ANN 

models were developed to correlate the relationship 

between the TFD process variables and the hole 

dimensional characteristics. The developed ANN 

models are based on Multi-Layer Perceptron (MLP) 

and Radial Basis Function (RBF) neural networks 

approaches. 

2. Experimental Procedures 

2.1. Workpiece Material 

Sheets made from AA6082 aluminum alloy (Al-

Mg-Si-Cu) with 3 mm thickness were chosen as a 

workpiece material. Chemical composition of 

AA6082 aluminum alloy is listed in Table 1. 

Table 1. Chemical composition of AA6082 aluminium alloy. 

Alloy 
Elements (wt. %) 

Mn Cu Fe Mg Zn Si Cr Ti Al 

  AA6082 0.62 0.1 0.5 0.7 0.2 0.89 0.25 0.1 Bal. 

2.2. Drilling Tool 

In the current study, thermal friction drilling 

process was achieved using H13 tool steel having the 

chemical compositions listed in Table 2. TFD process 

was performed using three different drilling tools 

having three conical angles (β), namely, 30
o
, 40

o
 and 

50
o
 and a constant height of 15 mm. Figure 1 shows 

an illustration of the used drilling tools. Drilling tools 

have constant diameter of 15 mm at the cylindrical 

region. 

Table 2. Chemical composition of H13 tool steel. 

Alloy 

Elements (wt.-%) 

Cr Si Mo V Mn C Fe 

H13 5.21 1.1 1.37 0.90 0.40 0.39 Bal. 

 

 

 

 

Figure 1. Drilling tools with different conical angles 

(β): (a) 30
o
, (b) 40

o
, and (c) 50

o
. 

 

(c) 

(a) 

(b) 

57



EIJEST Vol.41 (2023) 56–63 

 

2.3. Thermal Friction Drilling Process 

TFD process was performed on AA6082 Al-sheets 

using different process variables i.e., TRS, TFR and 

TCA. Table 3 displays TFD process variables and 

their levels. After TFD, the workpieces were cross-

sectioned at the center of the hole using wire-cut 

machine, later the hole dimensional characteristics 

i.e., HD and BH and BT were determined. Figure 2 

shows a schematic illustration of the HD, BT and BH 

dimension hole characteristics. The dimensions of the 

holes were measured using JMicroVision image 

analyzing software. The measurements were 

conducted using a digital ruler. The accuracy of the 

linear measurements was 0.001 mm. Figure 3 shows 

a photograph of the TFD process and the 

experimental setup. 

Table 3. Studied TD process parameters and their levels. 

Parameter Symbol Unit 
Level 

Min. Avg. Max. 

Feed Rate TFR mm/min. 100 200 300 

Rotational Speed TRS rpm 2000 2500 3000 

Conical Angle TCA Degree 30 40 50 

 

 
Figure 2. Bushing height, thickness, and hole diameter. 

 

 

Figure 3. The experimental setup for TFD carried out in 

the present investigation. 
 

The full factorial design of experiment (DoE) 

approach was adopted when performing the 

experiments. According to Table 3, the studied TFD 

parameters are three and each of these parameters has 

three levels (i.e., minimum, average and maximum). 

So, the total number of experiments to be conducted 

is 27 (3
3
). Each experiment was replicated three times 

(i.e., the total number of observations is 27×3 =81) 

and the average value of the dimensional 

characteristics was determined. The analysis of 

variance (ANOVA) statistical approach was carried 

out to study the influence of the TFD process 

variables on the dimensional characteristics of the 

manufactured holes. 
 

2.4. Regression Modelling 

Regression analysis was utilized to correlate TFD 

process parameters i.e., TRS, TFR and TCA with 

hole characteristics dependent parameters i.e., HD, 

BH and BT. A linear regression function was 

developed, having the following general form:  

 

y = bo + b1X1 + b2X2 + ... + bkXk        (1) 

 

where y is the predicted value of the dependent 

variable (y) for any given value of the independent 

variables (Xi), and bi is the regression coefficients. 
 

2.5. ANN Modelling 

Multi-Layer Perceptron (MLP) and Radial Basis 

Function (RBF) ANN modelling techniques were 

implemented. ANN model consists of three layers of 

nodes as displayed in Fig. 4. These layers are the 

input, hidden, and output layers. The input layer has 

an input signal to be processed. The prediction task is 

made using the output layer. A random number of 

hidden layers which are located between the input 

and output layers are the actual computational engine 

of MLP and RBF.  
 

Figure 4. Schematic illustration of the general 

structure of ANN models. 
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The experimental data were divided into three 

sets, namely, training data set, test data set and 

validation data set. The training set represents (54 

observations) was used to train the model. The 

validation set is smaller than the training set (14 

observations). It is used to evaluate the performance 

of models as well as to detect overfitting during the 

training steps. The test set (13 observations) is used 

to get an idea of the final performance of a model. 

The mean absolute percentage error (MAPE) was 

calculated to find the accuracy of the equations 

obtained from the regression and ANN models. The 

MAPE is given by the following formula - 

      
    

 
∑ |

     

  
| 

      

(2) 

Where, At is the target (experimental) value and Ft is 

the predicted value. The difference between the 

above values is divided by At. The absolute value in 

this ratio is summed for every forecasted point in 

time and divided by the number of experimental data 

points n. 
 

3. Results and Discussion 

3.1. Shape of Holes and Bushing 

Figure 5 displays typical examples of photographs of 

cross-sections of bushes formed after TFD of 

AA6082 Al-sheets using different TRS and TCA 

with constant TFR of 100 mm/min. Results revealed 

that TFD process variables play a substantial role in 

determining the final shape and dimension 

characteristics of the hole and bushing. 

Figure 5. Typical examples of the photographs of the 

cross-sections of bushes formed after TFD at constant 

TFR of 100 mm/min and several TRS and TCA. 

 

The smallest of HD was  14.992 mm for the 

holes drilled using TRS, TFR and TCA of, 

respectively, 2000 rpm, 200 mm/min and 60
o
. On the 

other hand, the largest HD was  15.296 mm for the 

holes drilled using TCA, TRS, and TFR of, 

respectively, 30
o
, 2000 rpm, 100 mm/min. The 

longest BH was 8.532 mm and was noted for the 

holes drilled using TCA, TFR and TRS of, 

respectively, 40
o
, 200 mm/min and 2000 rpm. The 

shortest BH was  6.875 mm and was noted for holes 

drilled using TRS, TCA, and TFR of, respectively, 

2500 rpm, 40
o
, and 200 mm/min. According to these 

results, BH of the holes varies between 2.29 t and 

2.844 t, where (t) is the sheet thickness. The thickest 

BT was  2.431 mm and observed for hole drilled 

using TCA, TRS and TFR of, respectively, 30
o
, 3000 

rpm and 300 mm/min. The thinnest BT was 0.829 

mm and was observed for hole drilled using TRS, 

TCA and TFR of, respectively, 2000 rpm, 50
o
 and 

200 mm/min. 

3.2. The ANOVA Results 

Figures 6-8 show main effect plots for HD, BH and 

BT, respectively. The results showed that, for the 

HD, increasing the TRS and/or TCA reduce(s) the 

diameter of the hole manufactured using TD process. 

Increasing the TFR from 100 to 200 mm/min reduced 

the HD, while increasing the TFR from 200 to 300 

mm/min increased the HD, but still lower than the 

hole diameter resulted at TFR of 100 mm/min. 

Increasing the TRS and/or TCA reduce(s) the BH 

(see Fig. 7). While, increasing the TFR from 100 

mm/min to 200 mm/min increased the BH, further 

increase in the TFR up to 300 mm/min tends to 

reduce the BH in the AA6082 Al alloy sheets. 

Moreover, increasing the TRS increases the BT, 

while increasing both the TFR and TCA reduce the 

BT (see Fig. 8). The increase in the TRS increases 

BT, but at the same time reduces the BH. This result 

is expected since the volume of the material is 

constant [1].  
 

 

 

Figure 6. The main effect plots for HD in AA6082 Al 
alloy sheets manufactured using TFD. 
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Figure 7. The main effect plots for BH in AA6082 Al 
alloy sheets manufactured using TFD. 

 

 

Figure 8. The main effect plots for BT in AA6082 Al 
alloy sheets manufactured using TFD. 

 

3.3. Regression Model 

Eqs. 3-5 show the results from linear regression 

modelling for HD, BH and BT, respectively.  

 

HD=15.4 - 0.00198 TCA - 0.000064 TRS - 0.000096 TFR   (mm) (3) 

BH = 8.94 - 0.0018 TCA - 0.000487 TRS - 0.00034 TFR     (mm) (4) 

BT= -0.399 - 0.00733TCA +0.000919 TRS-0.000333 TFR (mm)                                                                   (5) 

 

Where: HD, BH and BT are the hole diameter, 

bushing height, and bushing thickness, respectively 

in mm, The TCA is tool conical angle in degrees, 

TRS is the tool rotational speed in rpm, and TFR is 

the tool feed rate in mm/min. The results revealed 

that MAPE values of Eq. (3), Eq. (4) and Eq. (5) are 

41.89%, 46.30% and 15.95%, respectively. These 

results indicate that the linear models are failed to 

model the dimensional characteristics of the holes 

with an acceptable accuracy, especially, for the HD 

and BH. Figures 9 show a comparison between the 

experimental and predicted HD, BH and BT resulted 

from linear regression models. The ideal prediction is 

obtained when the experimental and predicted points 

are coincident.  For the HD and BH, the experimental 

and predicted points are not close to each other, while 

for the BT, these points are more relatively closer to 

each other. Ideal prediction is obtained when the 

experimental and predicted points are coincident.  

For HD and BH, the experimental and predicted 

points are not close to each other, but for BT, these 

points are more relatively closer to each other. 
 

 
Figure 9. Comparison between the experimental and 

predicted (a) HD, (b) BH and (c) BT resulted from 

linear regression model. 

 

3.4. ANN Model 

Two models were developed based on MLP and RBF 

ANN techniques. The structure of the two neural 

networks consists of three layers, typically, input, 

hidden, and output layers. Both MLP and RBF 

networks have an input layer that consists of three 

nodes, namely, the TRS, TCA and TFR. Also, both 

(a) 

(b) 

(c) 
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networks have an output layer that consists of three 

nodes, namely, the HD, BH and BT. The results 

revealed that best structure for the RBF and MLP 

networks have five and six nodes in the hidden layer, 

respectively. This indicates that the best 

performances were obtained for RBF and MLP 

models having structures 3-5-3 and 3-6-3, 

respectively. The activation functions used for the 

hidden layers of the MLP, and RBF networks were 

exponential and Gaussian functions, respectively. 

While the activation functions used for the output 

layers of the MLP, and RBF networks were Logistic 

and Identity (Linear) functions, respectively. The 

RBF network exhibited training, test, and validation 

performances of 63.031%, 72.905 and 56.970%, 

respectively. The MLP network exhibited training, 

test, and validation performances of 73.356%, 79.535 

and 57.426%, respectively. 
 

 

 

 

Figure 10. Graphical illustration for the relationship 

between experimental and predicted HD values resulted 

from RBF and MLP neural network models for (a) HD, 

(b) BH and (c) BT. 

Figure 10 shows a graphical illustration for the 

relationship between the experimental and the 

predicted HD, BH and BT values resulted from the 

RBF and MLP neural network models. It has been 

found the MAPE resulted from the RBF and MLP 

neural network models for HD were 3.48% and 

4.05%, respectively. The MAPE resulted from the 

RBF and MLP neural network models for BH were 

3.84% and 4.06%, respectively. While the MAPE 

resulted from the RBF and MLP neural network 

models for BT were 16.46% and 10.88%, 

respectively. Based on the abovementioned results 

showed that good agreement was observed between 

the experimental and the predicted values. 

 

 

Figure 11. Three-dimensional surfaces show the 

variation of the BH with TRS, and TCA resulted from 

the (a) MLP and (b) RBF neural network models. 

 

 

(c) 

(a) 

(b) 

(b) 

(a) 
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Figures 11 and 12 show typical three-dimensional 

surfaces that illustrate the variation of the BH with 

TRS, TFR and TCA resulted from the MLP as well 

as RBF neural network models. The MLP and RBF 

models showed that the dependence of the BH on 

both TFR, and TCA is very small (see Fig. 12). The 

3D surfaces on these figures are very flat i.e., any 

change in the TFR and TCA did not have any 

significant influence on BH. The TRS exhibited the 

most significant influence on the dimensional 

characteristics of the holes. For example, the 3D 

surfaces show that, at constant TCA and TFR, any 

change in the TRS can influence the hole 

dimensional characteristics. The significance of the 

TRS on the dimensional characteristics as compared 

to the TFR and TCA was reported by many 

investigators [11-13]. 
  

 
Figure 12. Three-dimensional surface shows the 

variation of the BH with TRS, and TCA resulted from 

the (a) MLP and (b) RBF neural network models. 

4. Conclusions 

Based on the obtained results, the following remarks 

can be drawn: 

1. The developed linear regression models for 

predicting the hole dimensional characteristics, 

typically, HD, BH and BT showed MAPE 

values of 41.89%, 46.30% and 15.95%, 

respectively. The regression models were failed 

to predict the hole dimensional characteristics 

with acceptable accuracies due to the complex 

interaction between the thermal friction drilling 

process parameters. 

2. Two ANN models based on the Multi-Layer 

Perceptron (MLP) and Radial Basis Function 

(RBF) approaches were developed. These ANN 

models were successfully used to predict the 

hole dimensional characteristics. For the HD, 

the MLP and RBF models exhibited mean 

average percentage error (MAPE) of about 

3.48% and 4.05%, respectively. While for BH, 

the MAPE resulted from the RBF and MLP 

ANN models are 3.84% and 4.06%, 

respectively. The MAPE resulted from the RBF 

and MLP ANN models for prediction of the BT 

are 16.46% and 10.88%, respectively. 

3. The ANN models showed good agreement 

between the predicted and the experimental 

values of the holes dimensional characteristics 

when compared with the linear regression 

models. The developed ANN models can be 

used to successfully predict the hole 

dimensional characteristics and reduce the 

tedious experimental work. 
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