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Smart Grid substations rely on conventional Supervisory Control and Data 

Acquisition (SCADA) systems for remote supervision and control. However, these 

systems are limited in the geographical area they cover. Recently, the Internet of 

Things (IoT) has paved the way for connecting a vast number of devices to 

the Internet, which would be effective and beneficial for power system automation 

and data acquisition. In this paper, an intelligent low-cost SCADA system based on 

IoT for transmission line fault diagnosis is proposed. In the first step of the 

proposed scheme, voltage and current signals at the relaying point are 

preprocessed and analyzed using Discrete Cosine Transform (DCT). Next, signal 

energy components are extracted and sent to a Boosted Decision Tree (BSDT), a 

reliable and fast ensemble classifier, to identify fault type and, accordingly, a 

specific ANN is activated to estimate fault location. The diagnosis data is sent to a 

microcontroller to be displayed, trip the load circuit, and allow communication with 

Cloud ThingSpeak platform via the ESP8266 wi-fi communication module which 

makes data available anywhere all over the world. The approach is applied on a 

real-world HV transmission line, located between Samalut and Cairo, Egypt, where 

more than 16000 faults cases are well tested. The results show the reliability, 

validity, and effectiveness of the proposed approach.  
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1. Introduction 

Transmission lines play a vital role in the 

distribution of electricity all over the world. Due to 

their dixecrexpoopxe ro rhe atmosphere for hundreds 

of kilometers, they suffer from high failure rates [1]. 

The process of repairing transmission lines faults 

may result in huge economic losses, especially if it 

takes long periods of time [2]. For this reason, 

determining the exact location of a transmission line 

fault is very important.  

Nowadays, cost-effective microprocessor-based 

digital relays in power system protection enable real-

time measurements of various signals which can be 

used to detect, classify, and locate faults. Relays 

became physically smaller, easier to set and test, and 

able to communicate [3]. Meanwhile, great progress 

was made in software for relay protection algorithms, 

digital signal processing (DSP), data mining, and 

machine learning, etc.  

Machine learning techniques are widely used in 

fault classification, i.e., whether it is line-to-line, line-
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to-ground, line-to-line-to-ground, or three lines to 

ground. For example, decision tree is popular due to 

its interpretability and short inference time [4]. It 

builds a classification model based on iterative 

partitioning of the training data [5],[6]. In ensemble 

classifiers, predictions are performed using multiple 

classification techniques to achieve higher accuracy 

and avoid overfitting. Tree-based ensemble 

techniques are commonly used for classification and 

regression in many research fields [7],[8]. Two such 

tree-based ensemble techniques are the Boosted 

Decision Tree (BSDT) for classification [9] and 

bagged decision tree for regression problems [10].  

Locating the fault is an additional challenge than 

determining the type of fault. Many fault location 

techniques are available, including impedance 

techniques, traveling wave techniques, wavelet 

analysis, and machine learning approaches [11]. 

Impedance relay is better suited for lines of medium 

length. However, it suffers from arc effects. 

Traveling wave method increases the speed of 

protective relaying.  However, it cannot distinguish 

between waves reflected from the fault itself and the 

far end of the line and it uses high sampling rates. On 

the other hand, the wavelet dependent methodologies 

[12],[13] rely on human expertise in their decision 

making. Artificial neural networks (ANN), a 

universal function approximator, can be used to 

predict fault location with higher accuracy compared 

to other algorithms [14-16]. For example, Obi et al. 

[17] employed ANN in detecting and locating faults 

using GPS and GSM for remote information access. 

However, the system is tested on fault resistance up 

to only 50 Ohms. In addition, Ankar and Yadav [18] 

used ANN to accurately locate faults in a HVDC 

Transmission System. Also, Raj and Chandran [19] 

employed ANN for fault location. However, the 

system was not tested on big testing samples. 

In addition to determine fault type and location, 

transmission line monitoring plays a key role in 

maintaining the required levels of grid performance, 

reliability, and security. For instance, Mirsaeidi et al. 

[3] developed an online micro-grid system based on 

phasor measurement units (PMUs) for adaptive 

protection, which updates the desired protective 

response in a timely manner in response to changes in 

system circumstances or requirements. However, 

PMUs call for intricate eigenvalue and eigenvector 

calculations. Transmission line monitoring of faults 

also makes it possible to perform predictive 

maintenance, particularly for outdated transmission 

line infrastructure, by warning probable faults in real-

time or by making decisions offline using corporate 

strategic management procedures [20].  

Recently, Power systems worldwide are moving 

towards smart grid systems which are an advanced 

technique of power transmission, distribution, 

measurement, energy control, and planning 

using digital technology and advanced 

communication systems [21],[22]. With the 

commercial availability of cloud computing, the 

smart grid can be Cloud-Based system [23]. As 

Cloud Computing has helped in bringing IoT to a 

reality [30], SCADA systems have 

increasingly  adopted IoT technologies [24],[25] 

making use of cloud computing to significantly 

reduce infrastructure costs and increase ease 

of  maintenance and smart grid integration. Cloud 

computing also allows data sharing with third parties 

as depicted by Talaat et al in [23]. Dhend and Chile 

[21] built  a SCADA system using GSM. However, 

due to the use of the cellular network, this design 

is  expensive and lacks a cloud or database to make 

fault predictions.  Minal Karalkar et al. [26] used IoT 

in recording fault detection  events but the system did 

not report any data about fault location. In [27], 

Monica et al. proposed a protection scheme against 

faults integrated with IoT mechanism, to inform the 

responsible person with location information along 

the overhead line. However, they did not discuss the 

results or any hardware implementation. Wang et al. 

[28] used Lora  and IoT for fault monitoring in the 

distribution network. Dhanalakshmi, and Sunkari 

[29]  employed fuzzy logic in fault classification and 

IoT for remote monitoring. However, the  system is 

tested in simulation only. Tom and Sankaranarayanan 

[30] proposed a SCADA  system integrated with fog, 

and it uses IoT for the distribution system 

automation.  Don et al. [31] used  IoT for remote fault 

data display and storage but did not reveal any results 

or curves.  Mohammed [32] proposed smart systems 

for monitoring important parameters in 

electrical  substations and transformers based on IoT, 

however, it did not discuss the faults. The use of IoT 

in power generation, smart energy applications, data 

transmission networks, and business is illustrated by 

Ahmad and Zhang in [33]. The use of  IoT in fault 

automated recording in other fields is depicted in [34-

36].  

Based on this context, this paper proposes an 

intelligent system, based on an IoT device, which 

continuously monitors the ideal working status of 

transmission lines.   This makes fault data of real-

world power transmission grids, the transmission line 

between the city of Cairo and Samalut, available on 

the internet and so it can be accessed from any place 
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in the world and provide location details to the 

authorized person. First, the measured field data of 

currents and voltages can be stored in a local or a 

remote cloud server, fed to a proposed robust BSDT 

tree, and then to the proposed ANNs for fault 

diagnosis. The system can monitor the outage of the 

transmission lines in real-time. The 

proposed approach used MATLAB Simulink to 

simulate, classify faults using the novel BSDT 

algorithm, and then locate them using the designed 

ANNs locator. Next, the results are sent, via serial 

port, to an Arduino microcontroller which compares 

the transferred data with a set of predefined values. 

The faults are then classified, and the microcontroller 

sends a signal to the relay that interfaces with the 

system to isolate the fault as well as a parallel signal 

to the LCD to display the kind and location of the 

fault as transferred from the module that simulated 

for fault location identification. The detected fault 

event is then immediately transmitted via the 

ESP8266 wi-fi communication module to the cloud 

where it will be saved in the ThingSpeak MySQL 

database.  

The paper is organized as follows. In Section 2, 

the power system under study as well as the outline 

of the proposed scheme is presented. The 

classification and regression techniques, BSDT tree 

and ANN, are reviewed in Section 3 including 

preprocessing and training. In Section 4, 

the integrated IoT model including the hardware and 

ThingSpeak platform is proposed. Section 5 provides 

several experiments, on the Transmission line 

between the city of Cairo and Samalut, Egypt, to test 

the validity of the proposed scheme. Finally, 

conclusions and possible future extensions for the 

current work are drawn in Section 6.  

2. Transmission line understudy and overview 

In this paper, the power system model under study 

is a 500 kV, 50 Hz three-phase double end sources 

transmission line of 209 km length between Samalut 

and Cairo, depicted in Figure 1.  The transmission 

line is modeled using the distributed parameters 

model whose values are given in Table 1. 

The overall hardware and software framework of 

the proposed protection scheme is also depicted in 

Figure 2. Voltage and current signals, at bus-1 at the 

sending end of the transmission line in Figure 1, are 

first preprocessed and then fed to the BSDT_ANN 

modules for fault type and location estimation. This 

part is simulated in MATLAB/Simulink on the host 

PC. A low-cost hardware platform of ATmega328P 

microcontroller is used to display the fault type 

and location on LCD and trip the load circuit. The 

microcontroller is serially communicated with the 

Internet of Things ESP8266 Wi-Fi module which 

sends fault information to the cloud to be available on 

the internet. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. The transmission line under study and the 

proposed fault diagnosis scheme. 

 

 

 

 

 

 

 

 

 

Fig. 2. Block diagram of the proposed relay hardware 

and software fault diagnosis scheme. 

Table 1. Transmission line parameters. 
 
Parameters Unit Value 

Positive sequence resistance (    ) 0.0217 

Zero sequence resistance (    ) 0.247 

Positive sequence inductance (     ) 0.96129 

Zero sequence inductance  (     ) 2.4828 

Positive sequence 

capacitance 

(     ) 8.1618 

Zero sequence capacitance (     ) 8.1618 

Rated voltage  (  ) 500 

Load angle of Samalut 

source  

(      ) 0 

Load angle of Cairo source  (      ) -10 
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3. The proposed BSDT_ANN protection scheme  

In this section, the details of the design of the 

proposed fault diagnosis scheme are described. This 

includes the pre-processing of current and voltage 

signals, the preparation of training data, and the 

training of both BSDT and ANN for fault 

classification and location, respectively. 

3.1. Pre-processing and Discrete Cosine Transform 

for feature extraction     

To reduce the size and time for the boosted 

decision tree and the neural network training, pre-

processing is needed to remove redundant 

information and noise from pre-or post-fault signals. 

First, samples for training are generated with 

MATLAB, in which voltage and current signals per 

unit values for different fault cases are generated in 

various stages along the transmission line. These 

instantaneous voltage and current values are sampled 

every 0.1 msec or equivalently at a rate of 10 kHz 

satisfying Nyquist sampling criteria. A second-order 

Butterworth filter with a 400 Hz cutoff frequency is 

used to process the signals to remove higher-order 

harmonics, beyond 7, resulting from noise and non-

linear power electronic components. After sampling 

and filtering, the discrete cosine transform (DCT) is 

applied. DCT allows very accurate reconstruction of 

a sequence from only few DCT coefficients. This is 

useful for the transmission of reduced data and 

machine learning applications. Four standard variants 

of DCT are available [37]. In this paper, the more 

accurate DCT-4 is used for fault signals. The DCT 

transforms a discrete-time signal x of length N to 

another signal y of the same length N according to 

the formula:  
 

 ( )  √
 

 
∑  ( )    (

 

  
(    )(    ))

 

   
      

(1) 

for k = 1 to N. 

3.2. Preparing datasets for training and testing  

Although the DCT coefficients have quite 

distinctive features for fault signals, they are 

not directly employed in decision-making. For fast 

data processing, the spectral energy for DCT signal is 

preferred. Signal energy is the sum of the square of 

the DCT coefficients calculated as follows [38].  

 

 

           ∑ | ( )|                                                         (2) 

 

Where E is the energy of DCT coefficients, and k 

is the sample number since the signal is discrete.  A 

three-phase transmission lines consists of A, B, and C 

phases, in addition to the ground line. Therefore, in 

this paper, ten types of faults are simulated with 

different fault resistance and location as shown in 

Table 2. To generate the dataset to be used to train 

and test the BSDT tree and the ANN, these faults are 

induced, one at a time, and the DCT and its energy 

are calculated. A MATLAB program script is used to 

calculate the DCT coefficients and their spectral 

energy for the overall signals.   Next,  

coefficients  energy values are fed to the BSDT and 

the ANN to be trained and to predict the fault type 

and its location in testing. Based on the details in 

Table 2, a dataset of 6880 samples will be used for 

training and testing. For training and testing of 

BSDT, a dataset sample consists of the four currents 

(IA, IB, IC, and IG) taken at the relaying point at one 

side of the transmission line, whereas for the ANN, a 

dataset sample consists of the three currents (IA, IB, 

and IC) and the three voltages (VA, VB, and VC) at 

the relaying point, i.e., six inputs are fed to the ANN. 

 
Table 2. Fault scenario parameters used in BSDT and ANN 

training and testing. 
 

Parameters Value 

Fault Type AG, BG, CG, ABG, BCG, ACG, AB, 

BC, AC, ABC. 

Fault Location (km) 0.8, 3, 5:5:205 

Fault Resistance(Ω) 0.05, 0.15, 0.25, 0.5, 1, 2, 5, 10, 15, 

25, 35, 45, 50, 60, 70, 80 

3.3. Proposed fault diagnosis algorithms 

Correct fault classification allows for single-pole 

tripping and reclosing while identifying the exact 

fault location in a faster recovery of the supply after 

the fault [14]. In this section, the proposed 

methodology of BSDT-ANN has been adopted after a 

wide range of experiments performed to reliably 

determine fault type and locate it. 

3.3.1. BSDT for fault classification 

The decision tree is one of the most used 

techniques for classification. They are easy 

to interpret [39] and more suitable for real-time tasks 

because of their moderate training time and fast 

classification speed as they can be easily 

78



EIJEST Vol.41 (2023) 75–91 

Misclassified Misclassified

Train Test TrainTestTrain

Vote

DT Model3DT Model2DT Model1

Dataset1

...

...
Dataset2 Dataset3

implemented in a digital platform using 

nested If…rhen…eloe oraremenro [4], [40]. For this 

reason, decision trees are adopted in this paper for 

fault classification. As its name suggests, a decision 

tree takes the form of a tree where at each node, 

starting from the top root node, specific conditions 

are tested iteratively, and decisions are made until the 

output class corresponding to the given data is 

determined. Decision trees are trained using several 

algorithms, e.g., ID3 [41],[42] with the objective 

of maximizing the homogeneity or reducing the 

entropy of examples after a split occurs at each node. 

Once the tree is built, it can be pruned to reduce its 

size. 

Another strategy in machine learning is to use 

ensemble classifiers [9]. These techniques use several 

learning algorithms so that they can produce more 

accurate models and avoid overfitting    [43]. 

Therefore, in this paper, the robust ensemble method 

of boosting decision tree is employed. In Boosting, 

an equal weight, i.e., using a uniform probability 

distribution, is given to the sample training data, 

Dataset1, at the very starting round. The Dataset1 is 

then given to a base learner, DT Model1. The 

misclassified instances by DT Model1 are assigned 

a weight higher than the correctly classified instances 

but considering that the total probability sums to 1. 

This boosted data, Dataset2, is then fed to the second 

base learner, DT Model2, and so on. Finally, a voting 

is applied on the combined results of each learner 

as shown in Fig. 3. In this paper, ten learners are used 

for fault classification. 

 

 

 

 

 

 

 

 

Fig. 3. Process flow diagram describing Ensemble 

Boosted decision tree training. 

 

 The challenge of a fault classification scheme is 

to satisfy the constraints of real-time operation. This 

is accomplished by using a reduced number of key 

features to reduce computational complexity while 

maintaining acceptable classification accuracy. 

Therefore, only calculated energy of the DCT of the 

three-phase currents and zero sequence current 

at relaying point are fed as inputs to the BSDT in the 

fault classification module.  

 

 A training data consisting of 6880 examples 

covering different faults are used to train the BSDT 

fault classifier. For each individual predictor case, 

there are four inputs representing features and one 

output for each response data encoding the 

corresponding fault class in decimal represented by a 

number from 1 to 10 for various phase-to-phase (e.g., 

AB, BC, etc.) and phase-to-ground (e.g., AG, BG, 

etc.) faults. This corresponds to (4 × 6880) predictor 

data (input data), and (1 × 6880) response data (target 

data).  

 The training data are shuffled and divided into two 

subsets via the option of Cross-Validation by 5-folds 

in the GUI classification learner in MATLAB to 

protect against overfitting by partitioning the dataset 

into 5 folds. First, the model is tested with the first 

fold, and it is trained with the remaining folds. The 

second fold serves as the testing set in the second 

iteration, the rest as the training set, and so on. In 

order to generate a single estimate of accuracy, the 

five results can then be averaged. 

 The BSDT approach is used to determine robust 

thresholds to classify the faults. Fig. 4 Shows the 

overall scheme included the trained BSDT-based 

fault classification designed module. Once a fault 

type is determined, the location module is activated, 

and the location of the fault is estimated by using the 

designed ANNs for that purpose. 

3.3.2. ANN for fault location estimation 

Artificial neural networks (ANN) are known to be 

a universal function approximator and so can be used 

in estimating fault location. The most well-known 

training algorithm for multi-layer neural networks is 

the Backpropagation algorithm. It searches for the 

best set of weights that minimizes the mean square 

error using a gradient descent optimization technique. 

Although decision tree has less inference time, ANN 

is more accurate for regression problems [15]. 

Two BSDT classifiers are employed in series. 

First, faults are classified into one of ten faults: AG, 

BG, CG, ABG, BCG, ACG, AB, BC, AC, or ABC 

(discussed in the previous section). Next, these faults 

are further classified into one of the four categories 

LG, LLG, LL or LLL by a second simple BSDT 

classifiers as depicted in Fig. 4. Then, a MATLAB 

script activates only the corresponding ANN fault 

locator. The location module consists of four ANNs, 

one for each fault category (LG, LLG, LL, LLL) as 

shown in Fig. 4. The inputs of each ANN are six 

calculated energies of the DCT coefficients of the 
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Fig. 4. The overall scheme for fault classification 

and location based on BSDT_ANN 

 

three-phase currents and voltages at the relaying 

point. The module output is the location of the fault 

in the line from the relaying point. Hence, to train 

LG, LLG, and LL faults, each ANN needs 6 x 2004 

input data  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and 1 x 2004 output data. On the other hand, LLL 

ANN needs only 6 x 668 input data and 1 x 668 

output data as it contains one fault type, i.e., ABCG, 

see Table 2. As the design of ANN fault locator is 

more difficult than fault classifier due to the 

enormous number of possible outputs, several trials 

are made to arrive at the best possible ANN 

architecture, for instance, ANN4 is designed to 

contain three hidden layers with 8, 8, and  
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6 neurons for layer1, layer2, and layer3 respectively. 

This design was found as the best design for 

accurately locating the faults within the same 

category of faults after many trials. Fig. 4 Shows the 

overall scheme included the trained ANNs-based 

fault location    designed module. 
 

4. The IoT model for the proposed system 
 

The internet of things (IoT) is a system which can 

link various devices, analog and digital machines, 

animals, objects, or people, and can send data over a 

network without human intervention [44] .  Each 

device in the IoT system is supplied with Unique 

Identifiers (UIDs). In mobile technology fifth 

generation (5G), enormous number of smartphones 

linked with IoT devices is expected to produce a huge 

amount of data transmission varying from a small 

number of bytes up to plentiful gigabytes [45].     IoT 

in this study is used for designing a cost-

effective network for transmission of fault 

information to the cloud so that it 

becomes available anywhere to  facilitate monitoring 

in real-time and  troubleshooting. The details of 

the proposed IoT system for fault diagnosis is 

presented in this section. 
 

4.1. ESP8266-01 for IoT 
 

The ESP8266 is a low-cost and highly integrated 

Wi-Fi System On a    Chip (SOC)module  incorporating 

TCP/IP networking software, and a built-in 

microcontroller, produced  by Espressif Systems in 

Shanghai, China for IoT utilization applications [46]. 

ESP8266 can  connect a microcontroller to a wireless 

network. When the microcontroller sends the 

fault  data to the ESP8266 unit, it can be stored on the 

server as well as being sent to a receiver. The  faults 

can then be monitored anywhere simply by using the 

ThingSpeak platform on a PC or  the android 

application of ThingViewer on a smartphone.  

The chip was brought to the interest of Western 

fabricators for the first time in August 2014  with the 

ESP8266-01 module, made by Ai-Thinker third-party 

manufacturer. This small board  enables 

microcontrollers to communicate to a Wi-Fi domain 

and uses Hayes-style commands   (AT commands) for 

making easy TCP/IP connections. At first, there were 

difficulties because  there was almost no 

documentation in English either on the slide or on the 

commands on it.  The extremely low price and 

simplicity of the unit attracted many hackers to 

translate Chinese  documents and explore the unit, 

chip, and software on it. In October 2014, the need 

for a  separate microcontroller to program the chip 

was eliminated as Espressif Systems released 

a  Software Development Kit (SDK) to program the 

chip directly. Another alternative of   "Unofficial 

DevelopmenrKir”ioinrxodpcedbyMikhailGxigoxev

[47]. Other mostly open- source SDKs, include 

Arduino, a C++-based firmware [48].   

Some of the advantages of the Esp8266-

01    module are represented in the small size, 

and  being a serial Wi-Fi module, it is very easy to 

connect with the Arduino board via serial  connection. 

The ESP8266-01 has    a built-in microcontroller, so it 

can be used as a standalone  microcontroller and Wi-

Fi module in one amazing combo. The ESP8266-01 

can operate  continuously in industrial environments, 

due to its wide range of operating temperatures.  With 

highly integrated on-chip features and a minimal 

number of separated external  components, the chip 

provides compactness, reliability, and durability. 

ESP8266-01 built with  an extra-low power 

consumption 32-bit Tensilica processor, which 

reaches a maximum clock  speed of 160 MHz as well 

as a standard digital peripheral interfaces, RF balun, 

antenna  switches, power amplifier, low noise receive 

amplifier, power management system, and filters.  All 

of them are got together in one tiny package.  

The Real-Time software and Wi-Fi stack saves 

about 80% of the power used in processing to be 

available. The power-saving architecture provides 

three modes of operation: active mode, sleep mode, 

and deep sleep mode. This enables designs depending 

on a battery to operate for much longer. 

Table 3 depicts some specs of the used chip in this 

paper proposal. The active pins include the General-

Purpose Input/Outputs (GPIOs) and Analogue to 

Digital Converter (ADC) pins with which external 

devices can connect to the ESP8266 Microcontroller 

Unit (MCU). The unit is packaged as 2 × 4 Dual In 

Line (DIL), as shown in Fig. 5. Many ESP-xx 

modules involve SMT LED which can be used to 

blink whenever. 
 

 

 

 
 

 

Fig. 5. Pinout of ESP-01 
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Name Active 

pins 

LEDs Antenna Dimensions 

(mm) 

Notes ADC Wi-Fi voltage 

ESP-

01 

6 Yes PCB 
trace 

14.3 × 24.8 1 MiB Flash, AI-Cloud, and 
black PCB from AI-Thinker. 

10 
bits 

IEEE 
802.11 b/g/n   

+3.3 V; can 
handle up to 3.6 

V 

 

All ESP board types have one serial port (known 

as a UART or USART) or more used to communicate 

with the Arduino board or other devices. ESP module 

communicates via RX and TX pins and uses TTL 

logic levels of 3.3V. For serial connection with 

Arduino microcontroller, the ESP-01 module is 

connected to the microcontroller's Transmit (Tx) and 

Receive (Rx) pins via a level converting circuit.  

4.2. Hardware integration with software 

The proposed system consists of two modules 

based on BSDT and backpropagation ANN (BP-

ANN) that classifies ten types of faults, as well as 

estimates the location of the faults. The two modules 

are simulated in MATLAB environment running on a 

host PC. Each module is integrated simultaneously 

with a cost-effective, accurate, and fast Microchip 

ATmega328P microcontroller-based Arduino unit to 

display fault type and location on LCD, trip the load 

circuit and sending these data to ESP8266 module for 

communication with ThingSpeak platform over the 

cloud. Arduino is a high-performance prototyping 

platform for open-source electronics built on easy-to- 

use modular hardware and software. This is what 

 
Table 3. specs for ESP-01. 

 

 

 

 

 

 

stimulated its use for the integration with 

MATLAB/Simulink proposed models and ESP8266 

module. The Arduino board operates at 1.8 V to 5.5 

V and has a 32 KB of flash memory for storing 

programs (with 0.5 KB used for the bootloader), 2 

KB of SRAM, 1 KB of EEPROM for storing 

parameters, a 16 MHz crystal oscillator, a USB 

connector, 14 digital input/output pins of which 6 can 

be used as PWM outputs, 6 analogue I/O pins, 

ATmega16U2 USB-to-TTL Serial chip, and RX and 

TX LEDs (flashes in data transmission).  Arduino is 

programmed with the Arduino software Integrated 

Development Environment (IDE) and interfaced with 

MATLAB by the Support Package software for 

Arduino and a type B USB cable.  

The 8- bit ATmega328P microcontroller on the 

board is pre-programmed with a bootloader that 

enables uploading the proposed algorithm to it 

without the use of an external programmer. The block 

diagram  

of the proposed relay based on simulation, ESP8266-

01 module, and Arduino Microchip ATmega328P 

microcontroller board is shown in Fig. 6. The 

protection algorithm fed into the microcontroller 

compares the transferred data (via serial port), from 

the fault BSDT classifier in MATLAB environment, 

with a set of predefined values. Next, the faults are 

classified, and the microcontroller sends a trip signal 

to the interfacing relay to disconnect a lamp showing 

the fault isolation and sends a parallel signal to the 

LCD to display the fault type and the fault position 

transferred from the designed ANN built in 

MATLAB for fault location estimation. The 

Microcontroller controls four LEDs that indicate 

which phase is faulted as shown in Fig. 7. The 

complete power system network, signal analysis, the 

BSDT, and ANN algorithms were implemented in 

MATLAB/Simulink environment.  

The ESP8266-01Wi-Fi module contains an 

Analog RF transmitter, Analog RF receiver, RF 

Balun, and antenna switch to connect to the global 

ThingSpeak and send data through its analogue Wi-Fi 

circuit using HTTP requests to store the history of all 

fault events of the monitored transmission line in the 

ThingSpeak  

 

 

 

 

 

 

 

 

MySQL database. Fig. 7 depicts the proposed IoT-

based experimentally co-simulated system.  

The Arduino digital pins can be configured to be 

serially communicated with the ESP8266-01 Wi-Fi 

board. A logic level converter circuit, shown in Fig. 

8, is needed to interface the 5 V TTL logic to the 3.3 

V TTL for serial communication with ESP8266-01. 

When the ESP-01 board is bought, it comes with a 

preinstalled AT firmware which is compatible with 

the Arduino IDE so the Arduino IDE software built-

in serial monitor and Bare Minimum software.  

script can be used to configure the ESP board 

before starting work (e.g., to set operation mode and 

to set station IP address). Fig.8 depicts the proposed 

scheme showing the various components used in the 

hardware implementation. A typical ESP8266 

module draws some 170mA and so, an external 

power supply is used. The typical setup hardware part 

is depicted in Fig. 9. 
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Fig. 6. Proposed software and hardware integrated fault diagnosis 

scheme.  

M
at

la
b

 p
ro

gr
am

 fo
r:


 

Si
gn

al
 P

re
p

ro
ce

ss
in

g,

 

D
CT


 

C
al

cu
la

te
 E

n
er

gy

Si
m

ul
in

k 
P

ow
er

 S
ys

te
m

 M
o

de
l

M
A

TL
A

B
 C

la
ss

if
ic

at
io

n
 a

n
d

 L
oc

at
io

n
   

al
go

ri
th

m
s 

b
as

ed
 o

n 
B

SD
T_

A
N

N

B
u

s 
1

 
cu

rr
en

ts
B

u
s 

1
 

vo
lta

ge
s

B
u

s 
2

 
cu

rr
en

ts

AT Mega 
328P Chip

D
ig

it
al

 I/
O

 In
te

rf
ac

e

2
K

B
 S

R
A

M

On board 
regulated 

power supply

Serial data 
transfer 

through USB 
port

16 MHZ 
Crystal 

Oscillator 

ARDUINO UNO Board

3
2 

K
B

 F
la

sh
 

P
ro

gr
am

 
M

e
m

o
ry

1
K

B
 

E
EP

R
O

M

But
ton

Reset

LCD
 to display fault 
Type, Zone and 

Location 

4 LEDs 
representing 
Phases A,B ,C 
and Ground

Relay
to trip the 

circuit

PC Simulation

Arduino Software  IDE

Output Units

RF Balun 
and 

antenna 
switch

Analog RF 
transmitter

Analog RF receiver

Bias 
Circuits

Power 
Control

PLL and 
VCO

Tensilic
a CPU

D
igital b

aseb
and

SRAM
Power 
Control

GPIO

I2C

PWM

SPI

I/O Analog WI-FI block 

Digital block

ATmega16U2
 USB-to-TTL Serial 

chip

Logic Level 
Converter

ADC

UART

ESP8266 Block Diagram 

Laptop

PC

Control Room

Tablet

T
h

in
g

Sp
e

ak

Multiple Monitors 

4.3. The ThingSpeak 

One of the most important parts of this paper is 

the ThingSpeak, an open internet of things platform 

that will permit to collect, analyze, and act on 

collected data. To use ThingSpeak, first it required to 

create an account on ThingSpeak web site depicted in 

Fig.10.  Next, a channel is created and two fields 

which are to  be monitored are added for fault type 

and its  location.  

Fault diagnosis data are uploaded to the 

channel  through the channel fields and ID. Also, 

configuring  actuators, to control a trip signal for 

instance, is also   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

possible with ThingSpeak. Furthermore, 

ThingSpeak  allows data analysis, visualization, and 

storing the  history of all fault events in the MySQL 

database.  Thus, fault diagnostics can be monitored 

from  anywhere and can be sent as alerts using email 

and  Twitter with the help of React app in 

ThingSpeak   [29].  

The main task of this IoT proposal based on 

ThingSpeak is to predict the need for maintenance 

which is an important task especially for old-age 

equipment to  decrease maintenance costs and crew 

labor hours in searching for the location of a fault in      
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Fig. 7. Experimental co-simulation arrangement for the proposed interactive scheme 

employing Thing Speak platform. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. The circuit diagram of fault IoT monitoring scheme in Fritzing. 
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Fig. 9. Hardware setup 

 

Fig. 10. ThingSpeak platform interface. 

85



 Amr A.   Fayyad,et.al / IoT based Fourth Generation SCADA System for High Voltage Networks Fault Diagnosis based on BSDT-ANN 

difficult terrain. For example, the maintenance 

technician may receive a pop-up message on his 

smartphone informing him that a certain fault type at 

a certain location is occurred, which accelerates 

solving the issue. In hardware, the ESP8266-01 board 

Wi-Fi module is used to send the BSDT output of 

fault classification and ANN output of fault location 

to the ThingSpeak channels. The values of the 

BSDT-ANN system output are uploaded to the 

ThingSpeak designed channels every 15 sec with the 

initially configured ThingSpeak channel. 

The server containing the fault diagnosis system 

may be installed locally at the relay point or remotely 

on the cloud. IoT Android application can 

communicate with the server every 2 seconds and 

refresh its data fields according to server data sent by 

RTUs (Remote Terminal Units) [36]. There are many 

open-source android APKs used for IoT, among 

which, the ThingView software is used in the current 

work. 

5. Results 

This section discusses the results in testing the 

diagnosis algorithm and the related monitoring 

system. 

5.1. Results of diagnosis algorithms 

The proposed classifier and locator are extensively 

tested using a reasonably large data set consisting of 

16640 samples with wide variability in fault location 

along with the proposed 209 km transmission line. 
The overall performance of the classifier is 

evaluated using fault classification accuracy defined 

as: 

            
        

  
                                (3) 

 

Where,    is the total number of correctly classified 

cases and    is the total number of fault classification 

cases. In addition, the performance of classifier for 

each individual class is evaluated using the sensitivity 

or recall defined as: 

 

         
   

      

   

                                   (4) 

 

 

 
 

 
 

Were,    
 is total number of correctly classified cases 

belonging to the i-th class and     is the total number 

of cases in the original training set belonging to the 

same class. As can be seen from Table 4, the overall 

classifier accuracy is 99.98% (corresponding to 3 

incorrect cases out of 16640) while the recall is 100% 

for LLG, LL, and LLL faults, and 99.94% for the LG 

fault. 

 To evaluate the accuracy of fault location 

estimate, the percentage error defined as  

 

                 
                                            

              
                    (5)                       

 

is used, where the mean value and standard deviation  

of the percentage error are given in Table   4. As can 

be  

seen, the error is below 0.5%.  

To test the robustness of the proposed scheme, 

simultaneous changes in resistance, location, 

and  type are induced and 560 samples are generated 

and tested. The results are shown in Table 5. 

The  recall is 100% for all classes and again the % 

error in fault location is below 0.5%. 

Although BSDTs and ANNs are trained for 

fault  xeoiorance xange pp ro 80 Ω, rhe reor io

pexfoxmed fox a xeoiorance pp ro 100 Ω. Also, the 

proposed scheme has been tested for various faults at 

different location from the relaying point, ranging 

from 0 km to 022 km. The results of  some selected 

examples for the robust test with wide changes in 

fault input parameters are given  in Table 6 for 

different fault scenarios.  

It can be noticed  that the Boosted decision tree 

and neural network sensitivity were not affected by 

any changes  in the fault parameters thus depicting the 

robustness of the proposed algorithm to any 

parameter  variations.  oloo The inference time 

recorded in Tables 4, 5, and 6 for the BSDT 

classifier, shows that the proposed fault scheme can 

be used to develop very high-speed protection 

systems where it ranges from 0.0075 sec to 0.0104 

sec.  
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Type of 

fault 

Total fault 

cases 

Performance of fault classifier Performance of fault locator 

Right 

cases 

Wrong 

cases 

% 

Recall 

average inference time 

(sec) 

Error mean 

value 

Standard 

Dev. 

L–G 4992 4,989 3 99.94 0.0079 0.0134 0.0318 

L–L–G 4992 4992 0 100.00 0.0093 0.0177 0.0958 

L–L 4992 4992 0 100.00 0.0102 0.3900 0.5580 

L–L–L 1664 1664 0 100.00 0.0104 0.0203 0.1143 

 

Table 4. General test results of the proposed scheme for varying in fault location of 16640 fault cases. 

Type of 

fault 

Total fault 

cases 

Performance of fault classifier  Performance of fault locator 

Right 

cases 

Wrong 

cases 

% 

Recall 

average inference 

time 

Error mean 

value 

Standard 

Dev. 

L–G 168 168 0 100.00 0.0084 0.0592 0.1194 

L–L–G 168 168 0 100.00 0.0080 0.0953 0.2128 

L–L 168 168 0 100.00 0.0080 0.4805 0.8973 

L–L–L 56 56 0 100.00 0.0080 0.1193 0.2882 

 

Table 5. Test results of the proposed scheme for varying resistance, type, and location of 560 fault cases. 

 

Scenario 

no. 

Fault 

Type 

Fault 

Resistance 

 Fault 

Distance 

(Km) 

Classifier 

Desired 

O/P 

Estimated 

Output 

% Recall Inference 

Time (sec.) 

Estimated 

Location 

% 

Error 

1 BG 0.04 2 2 2 100 0.0077 1.99 0.0062 

2 ABG 4 103 4 4 100 0.0075 102.99 0.0029 

3 BC 19 43 8 8 100 0.0078 42.44 0.2682 

4 BCG 27 207 5 5 100 0.0078 206.97 0.0139 

5 ABC 51 27 10 10 100 0.0079 26.98 0.0074 

6 AC 73 103 9 9 100 0.0079 104.03 -0.4908 

7 CG 100 2 3 3 100 0.0078 2.62 -0.2947 

8 AG 19 13 1 1 100 0.0079 13.02 -0.0095 

9 AB 51 201 7 7 100 0.0077 198.08 1.3993 

10 ACG 73 103 6 6 100 0.0077 102.99 0.0027 

 

Table 6. Test results of the proposed location and classification schemes for various fault types with varying fault resistance and distance 
from relaying point. 
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Fault 

scenario 

no. 

4 5 6 

Fault type 

on Think 

speak 

   

Fault 

Location 

on Think 

speak 

   

With 

Simulation 

by Proteus 

   

 

Table 7. Fault results of table 6 as obtained in Proteus and using ThingSpeak. 

 

 

5.2. Results of IoT monitoring system 

ThingSpeak can be used to monitor and display 

fault information in a user-friendly interface as 

shown in  Table 7 which shows some fault diagnosis 

results (secenarios 4, 5, and 6) that were collected in 

Table 6.  

The table shows the results of fault type and location 

for each fault secenario which coincide with the 

simulation results in Proteus. The fault type window 

for a specific occured fault its circle is turned into a 

dark red coulour as shown also in Fig. 10 . It is noted 

that, the numbers have been rounded up so that it 

saves the computations. Form Table 6, Fault scenario 

4 is for a BCG fault made at 207 km from the 

relaying point, Secenario 5 is for an ABC fault 

occuring at 27 km from the relaying point, and 

Secenario 6 is for an AC fault at 103 km from the 

relaying point and The proposed classifier and 

locator's actual result values are displayed in the 

same table. 

 

 

Acquisition of data for ten consecutive different 

faults in the ThingSpeak cloud as displayed on the 

ThingSpeak platform is shown in Fig.11. ThingSpeak 

handles the ten various faults shown in Table 6  

throughout the ten-minute period between 11.28 and 

11.38 in a good and trustworthy manner. It is clear 

that Thingspeak was successful in recording every 

incident of a fault. The authorized individual can use 

this historical data to identify the most frequent fault 

areas and follow them in predictive maintenance. 

Fig. 12 presents the same curves using the android 

ThingView APK. Of course, the availability of a 

mobile application for fault diagnosis makes fault 

management easier and faster. Once the authorized 

person open the application he can know the fault and 

all information about it. The straight horizonal line in 

the curves means the fault not fixed yet. 
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Fig 11. Historical diagnosis data in ThingSpeak 

website in the PC. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. Historical diagnosis data in the android 

application of ThingView.  

6. Conclusions and future work 

The upcoming revolution of the Internet of things 

(IoT) based on cloud computing presents a huge 

opportunity for enhancing power system quality and 

stability. In this perspective, a low-cost IoT based 

SCADA system integrated with BSDT_ANN 

machine learning algorithm, for fault diagnosis of 

transmission lines, is proposed in this paper. The 

diagnosis algorithm and power system model are 

simulated in MATLAB, implemented in hardware, 

and an Arduino board and ESP8266-01 module are 

used for power line fault monitoring. The system 

classifies, locates the faults, and alerts the operators 

by sending diagnosis information through the Thing 

speak cloud for resolving the faults in a short period 

of time and saving the data in MySQL database for 

future maintenance prediction. The results show the 

effectiveness, robustness of the proposed IoT based 

system, as well as its high speed in protective 

relaying systems of transmission lines. The proposed 

technique is straightforward to implement in a digital 

plateform. Compared to standard SCADA systems, 

the proposed IoT-based SCADA scales well with a 

large number of sensors where the system can handle 

a large amounts of data as it depends on cloud 

computing which have large storage resources, and 

allows data sharing with third party software. As a 

result, an authorised person can know quickly the 

fault data by checking a software program in his 

smartphone.  

In the future, this IoT-based architecture may be 

enhanced towards faster communication speed and 

more reliability for power automation. Also, the 

system may be extended to include other power line 

smart sensors to achieve better quality in power 

delivery and reliability.   
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