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1. Introduction  

The design of the vehicle systems from the 

standpoint of ride comfort and the degree of 

stability of the vehicle on the road must be in a safe 

way compatible with the stresses that may be 

occurred in the vehicle parts.  The vehicle chassis 

and its parts are the most important parts exposed 

to dangerous stresses. Some researchers consider 

the vehicle chassis presented is a flexible model. 

This work giving consider the model beam as 2 

Dof like the usual 2 degrees of freedom half-car 

model (bounce and pitches) [1]. The chassis 

(sprung mass) is a flexible beam 2 Dof half-car 

model which standing on a spring system at the 

front and rear. Three types of suspension systems 

categorize as passive, semi-active, and active 

vehicle suspension systems are modeled. The 

analyses of a half car model of a vehicle by a semi-

active suspension system [2]. are performed 

considering the chassis of the half-car model is 

rigid under random road excitations [3].  Using a 

rigid half-car model, active vehicle suspension 

systems are modeled simulated using Matlab 

/Simulink [4]. The ride vibration of the truck that 

affected frame flexibility was studied using the 

finite element method, FEM, [5]. They found that 

the driver and ride comfort, affected by frame 

flexibility particularly in the important range of 

human sensitivity. Also, it has been found that 

flexibility affects the acceleration levels in the 

frame structure and vehicle safety. In the present 

work, the time a history of any point along the 

vehicle chassis with a passive suspension system 
has been theoretically investigated using a 

half car model include the chassis is 

flexible  

2. System modeling  

Figure (1) shows simply supported have 

two degrees of freedom (DOF) which acts as the 

sprung mass of a half-car model standing on its 

ends. to make the system more understanding in 

boundary condition application. Without specifying 

convenient support conditions, the system will be 

free to move as a rigid body.  

                                                                                      

           

 

 

Fig: (1) propped cantilever beam 
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When the researchers before studied the behaviors of a vehicle chassis and the 

suspension due to the irregular road and the different driving conditions, they met 

some challenge like ensures the contact the wheels with the road all the time 

especially at cornering at all conditions of the road and the comfort of a ride. in most 

researches was assumed the chassis is rigid. but in the present paper, the flexible 

chassis included made a more realistic case.  The Bernoulli beam is governed by a 

fourth differential equation and resolved by aid FEM which gives the time histories at 

every node of the beam including its flexibility.  to make a more accurate image. 

Results are generated for Half Car elastic models at the ends and midpoints. 
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 According to Euler beam theory, Fig (2) [6] and 

Lagrangian Mechanics [7] which is used to model 

the beam with the concept of the frame [8] are used 

to derive the equations of motion. FEM of the 

flexible two Dof model is presented in the time 

domain [9]. To understand the underlying 

dynamics of the system  [10-11]. The important 

step to this understanding numerical modeling has 

become established.  The motivation of the study is 

to find out the behavior of cars for different types 

of road profiles [12]. The development of 

computers has provided the computational power to 

have software for mathematical modeling. 

Multibody dynamics, (MBS) [13], FEM [14], and 

Matlab software [15-16], etc., are widely used in 

the analysis of the mechanical design. 

 
Figure (2) Bernoulli-Euler Beam Element 

the beam equation solved with an assistant 

of Matlab. Must use Complex partial differential 

equations of Direct method Finite Element Method 

(Appendix B) which describe this system can be 

reduced to a collection of linear equations easily be 

using this method. In the Direct method finite 

element method exchanged into the governing 

equations and the unknown node, values are 

determined. 

By using the concept of tracking frame [4] to 

derive the equations of motion. FEM of the flexible 

two Dof model is presented in the time domain Fig 

(2). To understand the underlying dynamics of the 

system.  Numerical modeling has become an 

important step [8-9]. for different types of road 

profiles [16] is the motive to study to find out the 

behavior of the car.  The mathematical results of 

Vibration analysis of a cantilever beam with load at 

the tip and simply supported beam with the center 

load. The development of computers has provided 

the computational power to have software for 

mathematical modeling. Multibody dynamics 

system (MBS) [5], Finite Element Method (FEM) 

[6] and Matlab software [14-15], Etc. are widely 

Euler beam theory [2] and Lagrangian Mechanics 

[3] are used to model the beam and along used in 

mechanical design and analysis.  In this paper, we 

use the Finite Element Method to solve the beam 

equation with the helper of Matlab.  

 

3. stiffness matrix Derivation of the spring 

element: 

The local axis acts in the direction of the 

spring to be able to directly measure displacement 

and force along with the spring. the local nodal 

force at node one for the spring element associated 

with the local axis.   

                                                                        

 

              Fig:(3) Finite element model 

 

The local nodal displacements are   

 ̃  ̃   ̃   ̃   for the nodal of the elements as shown 

in Fig. (3). the force at node one can be written as 

follow: 

 ̃   ( ̃    ̃ )             (1) 

 For node two as follow. 

 ̃   ( ̃    ̃ )              (2) 

Or we can write the equation 13, 14 as follow. 

{
 ̃  

 ̃  
}  0

   
   

1 {
 ̃ 
 ̃ 
}                        (3) 

So, we can write the stiffness matrix for element 

spring assuming K1 equal K2 

  
     

    0
   
   

1                            (4) 

4. Finite Element modeling: 

 
Fig:(4) one finite element 

 

We can calculate the displacement of 

nodes of the beam and its associated modes of the 

flexible beam supported by two springs at both 

ends by the aid Finite element method. The 
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damping is not considered for finite element 

analysis.  the way to drive The elemental equations 

of stiffness and mass-spring at both ends. the beam 

is discretized (N-1) two noded elements generating 

N nodes. Fig. (4) shows matrices for the bending 

motion of the beam depend upon Euler  Bernoulli 

bending theory. Fig. (2) shows a slender beam 

supported by the arbitrary element with the two 

degrees of freedom per node,   ,    represents 

displacement  and deflection of   ( )    node,      , 

and       represents displacement and 

deflection of (   )   node respectively. 

Hence the stiffness matrix is (see appendix B) 

, -  
  

  
(

         
           

   
  

   
   

     
      

)         (5) 

 

6. The global stiffness matrix for our case: - 

From equation (1), (4) for the beam 

element and spring element respectively (her for 

the study assume the beam is one element) we can 

get the global stiffness matrix for all the system as 

follow: 

 

 

   
  

   

[
 
 
 
 
 
 
 
 
   

  
 
   

  
                                                               

 
   

  
   

   

  
                                                       

 
 
 
 

  
   
  
 

                 

             

               
 

 

   

          
   

  

   

 
   

  

                

           
   

  

             

            

       

           
   

  ]
 
 
 
 
 
 
 
 

        (6) 

           

 

By 

using the boundary condition for the system. 

Then the global stiffness matrix becomes as 

follow: - 

 

   
  

  

[
 
 
 
    

   

  
       

           

   
  

   
   

   
   

  

   

   
   ]

 
 
 
 

(7)        

                                           

 We must know the global stiffness for our 

modeling will take another form because the 

beam divides into 100 elements and assuming 

the boundary condition for the simply 

supported beam.  

 

5. Drive the element mass matrix for the 

beam  

 

  ∫        
 

 
                                                 

Where: M    , 

N=,        -  we can get the value 

of (N) from equation (8). Now, we can get the 

value of (   )   as follow  

 

    [

  
  
  
  

] ,        -               Or 

 

    

[

                
                
    
    

    
    

    
    

    
    

]     (8)  

We can get the value of N from 

Appendix B as follow: 

     2
 

  
(           )3

 

  
 

  
(           )                         (9) 

                                

Now, 

 

  
∫       

 

 
       

 

 

 

 

             
  

  
(
  

  
)  

     

   
           (  ) 
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For the element    , and we can do all elements 

of equation (8) in the same way to get the global 

mass matrix (8) for the beam in our system as 

follow: 

   
   

   
[

            
              

  
    

    
    

   
    

    
   

](11) 

 

Equation (5) and (9) acts as the stiffness and mass 

matrix for elements.            

7. System input 

Fig. 5 shows the sketch half-car model 

system. The suspension model consists of a chassis 

as a beam [13] and two axles. Linear spring 

supports the chassis without includes the tires. The 

input displacement from the road equals sinusoidal 

wave at the front tire (x= X sin wt.) and the same 

value at the rear tire additional time delay (x=X sin 

wt. +L/v) as shown in figure (10) (Appendix A).  

Where X is the amplitude of displacement and 

equal 0.1, L the length of the chassis, and v is the 

velocity of the vehicle [1]. The system constraints 

are mainly due to the tire contacts. Thus, if the tires 

are assumed to be static and replaced by two pins. 

The model is excited through the tires by a base 

motion, resulting in a force through springs and 

dampers, on nodes 3 for the front and GDof-3 for 

the rear [14 to 17]. 

 

 
Fig: (5) System model 

 

8. Results 

 

The results were obtained for a system as 

a simply supported beam with springs at both ends. 

The Figures (From 6 to 12) represent behavior 

amplitude for a beam (chassis) under the load acted 

which was born from the road for 100 beam 

elements with two spring elements at both ends. 

The Matlab program used to get these results is 

given. The boundary conditions were obtained 

results for a claimed beam for deflection degree of 

freedom at its ends and Assume fixed point at the 

ends of spring. Fig (6) Shows the total elastic 

amplitude of the system at the total node of the 

beam. The fluctuating area showed the system 

behavior of the model. Figure (7) Show the only 

vertical elastic displacement at every node. Figure 

(8) Show the elastic deflection shape for the 

Chassis at all nodes. Figure (9) shows the elastic 

vertical displacement shape at the left tip of the 

Chassis. Figure (10) Show elastic vertical 

displacements respectively at the right tip of the 

Chassis. Figure (11) shows the elastic vertical 

displacement at the middle span of the chassis. 

Figure (12) shows the elastic deflection of the mid-

span of the Chassis. 

 

 
Fig: (6) System Elastic Amp. With element Dof for all 

model 

Fig: (7) Elastic System vertical Amplitude for all model 

                                             

Fig. 

(8)elastic system deflection for all model 

 

   
Fig: (9) elastic Vertical left tip node amplitude 

 

 
Fig: (10) right tip elastic Vertical amp for all model 
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Fig: (11) Middle node vertical elastic amp 

       

 
Fig: (12) Middle node elastic deflection amp. 

 

9. Discussion 

By finite element method theory, we can 

say the error reduces, as increasing the number of 

elements, that improves the accuracy of the 

solution. Also, the graphs display the results 

obtained for homogenous boundary conditions for 

every node of the Chassis. The fluctuating area 

(figure (6)) due to road irregular can be decreased 

by changing the properties of the chassis material. 

We notice the vertical amplitude at the right tip is 

greater than the left tip.  This is seeming a realistic 

result because the deflection of the beam (chassis) 

makes as the spring which presses at the right end 

makes the right displacement increase as shown.  

 

10. conclusion   

The present paper study the vehicle 

behavior which directly influenced by road 

irregular and suspension system. The displacement 

of the half vehicle without tire via Matlab as simply 

supported beam at the right end and fixed at left 

considered under load acting from road hump and 

tire stiffness at the contact point between the tire 

and the road. the Bernoulli beam which is a fourth-

order differential equation. Cubic elements are used 

as required for continuity by governing differential 

equation is that pre-described. Graphs are presented 

and discussed the elastic displacement at every 

node of the chassis. 
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Appendices  

- Appendix A 

 

  

 
 

 

Fig: (13) Car model moving with speed v on a wavy 

road 

 

x = A1 cos (ω1t) +A2 sin (ω2t +α). The 

required time to pass one wavelength d1 is the 

period of the excitation (fig. (13)). T = d1/v. 

Therefore, the frequency of excitation is ω = 

2π/T =2πv/d1 and the excitation y = Y sin ωt is 

y = d2/2 sin2 t πv/d1 

- Appendix B 

Direct method 

Starting with only one element beam which is 

subject to bending and shear forces. There are 

4 nodal degrees of freedom. Rotation at the left 

and right nodes of the beam and transverse 

displacements at the left and right nodes. The 

following diagram shows the sign convention 

used for external forces. Moments are always 

positive when the anti-clockwise direction and 

vertical forces are positive when in the positive 

𝑦 direction. The two nodes are numbered 1 and 

2 from left to right.  1 is the moment at the 

left node (node 1),  2 is the moment at the 

right node (node 2). 𝑉1 is the vertical force at 

the left node and 𝑉2 is the vertical force at the 

right node. 

 

 
Fig. (14) applied forces direction 

  

Figure (14) shows the signs used for the 

direction of the applied force when acting in 

the positive sense. Since this is a one-

dimensional problem, the displacement field 

(the unknown being solved for) will be a 

function of one independent variable which is 

the   coordinate. The displacement field in the 

vertical direction is called 𝑣 ( ). This is the 

vertical displacement of point   on the beam 

from the original   − 𝑎  𝑠. Figure (15) shows 

the notation used for the coordinates 

 

 
Fig. (15) notation used for the coordinates 

  

Angular displacement at distance   on the 

beam is found using 𝜃 ( ) =  ( ) /  . At the 

left node, the degrees of freedom or the 

displacements, are called 𝑣1, 𝜃1 and at the 
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right node, they are called 𝑣2, 𝜃2. At an 

arbitrary location   in the beam, the vertical 

displacement is 𝑣 ( ) and the rotation at that 

location is 𝜃 ( ). Figure (16) shows the 

displacement field 𝑣 ( ) 

 
Fig. (16) displacement field 

In the direct method of finding the stiffness 

matrix, the forces at the ends of the beam are 

found directly by the use of beam theory. In 

beam theory, the signs are different from what 

is given in the first diagram above. Therefore, 

the moment and shear forces obtained using 

beam theory ( 𝐵 and 𝑉𝐵 in the diagram 

below) will have different signs when 

compared to the external forces. The signs are 

then adjusted to reflect the convention as 

shown in the diagram above using   and 𝑉. 

For example, the external moment  1 is 

opposite in sign to  𝐵1 and the reaction 𝑉2 is 

opposite to 𝑉𝐵2. To illustrate this more, a 

diagram with both sign conventions is given 

below fig. (17) 

 

 
Fig. (17) sign conventions 

 

The goal now is to obtain expressions for 

external loads    and 𝑅  in the above diagram 

as a function of the displacements at the nodes. 

 , -  *𝑣   𝜃  𝑣   𝜃 +
  

In other words, the goal is to obtain an 

expression of the form {𝑝} = [ ] { } where 

[ ] is the stiffness matrix where   

 , -  *𝑣   𝜃  𝑅     +
  

is the nodal forces or load vector, and { } is 

the nodal displacement vector. 

In this case [ ] will be a 4 × 4 matrix and {𝑝} 

is a 4 × 1 vector and { } is a 4 × 1 vector. 

Starting with  𝑉 . It is in the same direction as 

the shear force 𝑉  .  

 

Since 𝑉   
    

  
    then 

 

𝑉   
    

  
     

Since from beam theory  

 

      ( )
 

 
 , the above becomes 

𝑉   
 

𝑦

  ( )

  
 

But   ( ) = 𝐸𝜀 ( ) and  𝜀( )
 

 
 𝜀 ( ) where   is 

the radius of curvature, therefore the above 

becomes 

𝑉  𝐸  
 

  
(
 

 
) 

Since  

 

 
 

   
   

(  .
  
  
/
 

)
 
 ⁄
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and for a small angle of deflection  

  /    ≪ 1  

then   

 

 
 (
   

   
)                     

 and the above now becomes 

 

𝑉  𝐸 
   ( )

   
 

Before continuing, the following diagram fig. 

(18) illustrates the above derivation. This 

comes from beam theory. 

 

 

Fig. (18) radius of curvature 

 

Now    is obtained.    is in the opposite 

sense of the bending moment     hence a 

negative sign is added giving                      

But       ( )
 

 
          therefore 

    ( )
 

 
 𝐸𝜀( )

 

 
 𝐸(

  

 
)
 

 
 

       =-EI (
 

 
)   𝐸 

   

   
           

 

𝑉  is now found. It is in the opposite sense of 

the shear force 𝑉  , hence a negative sign is 

added giving    𝑉   𝑉    
    

  
 

 

Since       ( )
 

 
 , the above becomes 

𝑉  
 

𝑦

  ( )

  
 

But  ( )  𝐸𝜀( ) 𝑎   𝜀( )  
  

 
  

 where   is the radius of curvature. The above 

becomes 

 

𝑉  𝐸 
 

  
(
 

 
) 

But 

  

 

 
 

   
   

(  .
  
  
/
 

)
 
 ⁄

 

 

 and for small angle of deflection 

  

  
≪    

 hence 
 

 
 .

   

   
/ 

 then the above becomes 

 

𝑉   𝐸 
   ( )

   
 

Finally,   is in the same direction as    so 

no significant change is needed. 

      ( )
 

 
   

Therefore 

 

     ( )
 

𝑦
  𝐸𝜀( )

 

𝑦
 

                =-E.
  

 
/
 

 
 𝐸 .

 

 
/  𝐸 

   

   
 

The following is a summary of what was found 

so far. Notice that the above expressions are 

evaluated at  

  = 0 and at   =  . Accordingly, to obtain the 

nodal end forces vector {𝑝} 

 

*𝑝+  {

𝑉 
  
𝑉 
  

}  

{
  
 

  
 𝐸 

   ( )

   
    

 𝐸 
   

   
    

 𝐸 
   ( )

   
    

𝐸 
   

   
    }

  
 

  
 

   

 

The RHS of the above is now expressed as a 

function of the nodal displacements 𝑣1, 𝜃1, 𝑣2, 

𝜃2. 

To do that, the field displacement 𝑣 ( ) which 

is the transverse displacement of the beam 
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is assumed to be a polynomial in   of degree 3 

or 

𝑉( )  𝑎  𝑎   𝑎  
  𝑎  

        

𝜃( )  
  ( )

  
𝑎   𝑎    𝑎  

         

The polynomial of degree 3 is used since there 

are 4 degrees of freedom, and a minimum of 4 

free parameters is needed. Hence 

𝑣  𝑣( )    𝑎  

And 

𝜃  𝜃( )     𝑎  

Assuming the length of the beam is  , then 

𝑣  𝑣( )     

          𝑎  𝑎   𝑎  
  𝑎  

  3    

And 

𝜃  𝜃( )     

          𝑎   𝑎    𝑎  
          

 

Equations (2-5) gives 

 

* +  {

𝑣 
𝜃 
𝑣 
𝜃 

}  {

𝑎 
𝑎 

𝑎  𝑎   𝑎  
  𝑎  

 

𝑎   𝑎    𝑎  
 

} 

 

 (

    
    
 
 

 
 

    

     

){

𝑎 
𝑎 
𝑎 
𝑎 

}                      

 

Solving for 𝑎  gives 

{

𝑎 
𝑎 
𝑎 
𝑎 

}  

(

 
 
 

    
    

 
 

  

 

  

 
 

 
 

  

 

  
 
 

 

 
 

  
 

  )

 
 
 
{

𝑣 
𝜃 
𝑣 
𝜃 

}  

 

 

{
 
 

 
 

𝑣 
𝜃 

 

  
𝑣 
 
 
 

 
𝜃  

 

  
𝑣  

 

 
𝜃 

 

  
𝜃  

 

  
𝜃  

 

  
𝑣  

 

  
𝑣 }
 
 

 
 

           

 

𝑣 ( ), the field displacement function from Eq. 

(A) can now be written as a function of the 

nodal displacements 

𝑣( )  𝑎  𝑎   𝑎  
  𝑎  

     (A) 

 𝑣  𝜃   (
 

  
𝑣  

 

 
𝜃  

 

  
𝑣 

 
 

 
𝜃 )  

 

 (
 

  
𝜃  

 

  
𝑣  

 

  
𝑣 )    

Or in matrix form 

 

𝑣( )  4   
  

  
  

  

  
   

  

 
 
  

  
 
  

  
  

  

  
 
  

 
 
  

  
5 

 

 (
 

  
(            

 

  
(           )

 

  
(        )

 

  
(       )) {

𝑣 
𝜃 
𝑣 
𝜃 

} 

𝑣( )  (  ( )   ( )   ( )   ( )) {

𝑣 
𝜃 
𝑣 
𝜃 

}   

 

The above can be written as 

 

𝑣( )  , -* + 

Where    are called the shape functions. The 

shape functions are 

 
(

 

  ( )

  ( )

  ( )

  ( ))

  

[
 
 
 
 
 
 
 
 

  
(           

 

  
(           )

 

  
(        )

 

  
(       ) ]

 
 
 
 
 
 
 

 

45



Mohamed R. Ghazy, et. al  / Analysis of Chassis Flexibility for Half Car Model 

 

We  

notice that   ( )      and   ( )=0, as 

expected. Also 

 

   ( )

  
     

 

  
(          )       

 

  And 

 

   ( )

  
     

 

  
(          )       

Also   ( )    and   ( )      and 

 

   ( )

  
     

 

  
(        )       

 

  And 

 

   ( )

  
     

 

  
(        )       

The shape functions have thus been verified. 

The stiffness matrix is now found by 

substituting 

Eq. (5A) into Eq. (1), repeated below 

 

*𝑝+  {

𝑣 
  
𝑣 
  

}  

(

 
 
 
 
 
 
𝐸 
  𝑣( )

   
    

 𝐸 
  𝑣

   
    

 𝐸 
  𝑣( )

   
    

𝐸 
  𝑣

   
    )

 
 
 
 
 
 

 

Hence 

*𝑝+  {

𝑣 
  
𝑣 
  

}

 

(

 
 
 
 
 
 

𝐸 
  

   
(  𝑣    𝜃    𝑣    𝜃 )

 𝐸 
  

   
(  𝑣    𝜃    𝑣    𝜃 )

 𝐸 
  𝑣( )

   
(  𝑣    𝜃    𝑣    𝜃 )

𝐸 
  

   
(  𝑣    𝜃    𝑣    𝜃 ) )

 
 
 
 
 
 

 

 

But 

  

   
  ( )  

 

  
  

   
(           )  

  

  
 

 

And 

  

   
  ( )  

 

  
  

   
(           )  

 

  
 

And 

 

  

   
  ( )  

 

  
  

   
(        )  

   

  
 

 And  

 

  

   
  ( )  

 

  
  

   
(       )  

 

  
 

 

For the second derivatives 

  

   
  ( )  

 

  
  

   
(           )

 
 

  
(      ) 

  

   
  ( )  

 

  
  

   
(           )

 
 

  
(     ) 

 

And 

 

 

  

   
  ( )  

 

  
  

   
(        )

 
 

  
(      ) 

And 

  

   
 ( )  

 

  
  

   
(       )

 
 

  
(     ) 

 

 

 

 

Hence Eq. (6) becomes  

*𝑝+  {

𝑣 
  
𝑣 
  

} 
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(

 
 
 
 
 
 
𝐸 
  

   
(  𝑣    𝜃    𝑣    𝜃 )    

 𝐸 
  

   
(  𝑣    𝜃    𝑣    𝜃 )    

 𝐸 
  𝑣

   
(  𝑣    𝜃    𝑣    𝜃 )    

𝐸 
  

   
(  𝑣    𝜃    𝑣    𝜃 )    )

 
 
 
 
 
 

 

 

(

 
 
 
 

𝐸 .
  

  
𝑣  

 

  
𝜃  

  

  
𝑣  

 

  
𝜃 /     

 𝐸 .
 

  
(      )𝑣  

 

  
(     )𝜃  

 

  
(      )𝑣  

 

  
(     )𝜃 /     

 𝐸 .
  

  
𝑣  

 

  
𝜃  

  

  
𝑣  

 

  
𝜃 /     

𝐸 .
 

  
(      )𝑣  

 

  
(     )𝜃  

 

  
(      )𝑣  

 

  
(     )𝜃 /     )

 
 
 
 

  

 

 

 
  

  
(

         
 (      )     (     )    (      )     (     )   

   
(      )   

   
 (     )   

     
(      )    (     )   

)       

 

Or in matrix form, after evaluating the expressions above for   =   and   = 0 as 

 

{

𝑣 
  
𝑉 
  

}   
𝐸 

  

(

 
 

         
           

 
  

  

(      )

 
 

  

 (     )

  

  
 
 

  

(      )  (     ))

 
 
{

𝑣 
𝜃 
𝑣 
𝜃 

} 

 

 
𝐸 

  
(

         
           

   
  

   
   

     
      

) 

 

The above now is in the form 

 

*𝑝+  , -* + 

 

Hence the stiffness matrix is 

, -  
𝐸 

  
(

         
           

   
  

   
   

     
      

)

 

 

 

Knowing the stiffness matrix means knowing the nodal displacements { } when given 

the forces at the nodes. The power of the finite element method now comes after all the 

nodal displacements 𝑣1, 𝜃1, 𝑣2, 𝜃2 are calculated by solving  

*𝑝+  , -* + 
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