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The current paper is devoted to exploring and investigation of homogeneous steady 

state nanofluid surrounding cylindrical solid pipes in two dimensions. The 

modelling system was transformed to a system of ordinary differential equations 

via the group method of similarity transformations. These equations were 

numerically solved employing fourth order Runge-Kutta algorithm supported by 

the shooting technique. In the numerical results, the velocity components, shear 

stress, pressure, temperature and heat flux inside the boundary layer are obtained 

for various values of nanoparticle volumetric fraction   and different types of 

nanofluids (silver-water, copper-water, titanium-water and alumina-water). The 

results shows that the velocity components, temperature and pressure distribution in 

the boundary layer decrease as increases of nanoparticle volume fraction. To check 

the behavior and performance of the flow and heat transfer, a comparison of 

different types of nanofluids is illustrated. It is found that the silver nanoparticles 

achieve the highest value of temperature due to high thermal conductivity and also 

they achieve the highest value of pressure due to high density compared to the other 

nanoparticles. Moreover, the radial velocity and the axial velocity are the highest 

for titanium oxide-water nanofluid compared to the alumina-water, copper-water 

and silver water. 

 

1. Introduction 

Nanofluid is a recent development in applications of 

nanotechnology which incorporate small amount of 

nanosized metallic or non-metallic particles (of range 

less than 100 nm). These particles are suspended 

uniformly and stably in a base liquid. The base liquid 

types are water, oils and ethylene glycol (EG) 

mixture. The solid nanoparticles distributed in 

traditional fluids greatly affects their thermal 

conductivity. The solid particles in nanofluid 

enhance its characteristics such as a 

 electrical, thermal conductivities and magnetic 

properties. Nanofluids can be employed in numerous 

industrial applications such as transformer cooling, 

electrical cooling, chemical production, advanced 

nuclear systems, cooling and heating in building, 

engine cooling and solar water heating. Many 

researchers were motivated to investigate the behavior 

of  mass and heat characteristics in nanofluids 

subjected to different flow conditions in various 

geometries [1, 2] . Two models were used to  
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investigate nanofluid behavior, the homogeneous and 

the non-homogeneous models. 

      The non-homogeneous model considers the slip 

motion and related forces, whereas in the 

homogeneous model, this effect is negligible [3]. In 

homogeneous model, due to the small size of 

nanoparticles, the fluid and particles velocity is the 

same. The properties of the nanofluid were calculated 

for certain values of Peclet number [4-6].  For a 

homogeneous analysis, the governing equations are 

continuity, momentum and energy equations with 

their physical properties which are related to the 

volumetric fraction of nanoparticles. Many 

researchers studied convective transport models of 

nanofluid in a non-homogeneous model [3, 7, 8]. 

Buongiorno carried out an comprehensive study of 

convective transport in nanofluids [9]. 

       In engineering studies, the fluid flow and the 

corresponding heat mass transfer around cylinders 

are important since the moving fluid affects the 

thermal resistance and the cooling of the product. The 

flow over cylinders is assumed to be two-dimensional 

when the body radius is large with respect to the 

boundary layer thickness. In addition, if the cylinder 

radius is of the same order as the thickness of the 

boundary layer, the flow is considered axisymmetric 

[10, 11]. The convective heat transfer for various 

geometries in nanofluids with different flow 

conditions has been studied by the Khanafer et al. [1] 

and Khan and Aziz [12]. Brady and Acrivos [13] 

studied the steady flow in an incompressible and 

viscous ambient fluid inside a stretching tube, while 

Wang [14] examined the same flow outside of a 

stretching cylinder. Rahman [15] showed that 

nanofluid flow velocity is lower than base fluid 

velocity. Also, he found that the presence of 

nanoparticles improves the rate of heat transfer and 

decreases the thickness of the hydrodynamic 

boundary layer. Ferdows [16] concluded that the 

thermal boundary layer decreases with an increase in 

the volume fraction of the nanoparticles and increases 

with an increase in the viscosity. Maskeen [17] 

indicated that through increasing the impact of 

magnetic parameter M, the hybrid nanofluids velocity 

profile decreases but the temperature profile 

increased. Elgazery [18] found that by using different 

types of nanofluids, the velocity and temperature 

profiles were affected, which means that nanofluids 

are significant in the heating and cooling processes. 

Also, he found that adding silver oxide achieves the 

maximum value of the temperature of the nanofluid. 

 

           In this study, using group transformation 

method and similarity transformation, the 

mathematical model was transformed into a system 

of ordinary differential equations (ODEs). The 

system equations of (ODEs) are solved numerically 

by using shooting technique. Different techniques of 

similarity transformation were used to investigate 

either evolutionary equations with different 

dimensions or fluid dynamics described by Navier-

Stokes equations [19-28] . The solution for this set 

defines the invariants specific form  [29]. 

Nomenclature  

Latin symbols 

Group parameter 

Group symbol 

Specific heat at constant pressure (J/ Kg K) 

Thermal conductivity of base fluid (W/m K) 

Thermal conductivity of nanofluid (W/m K)  

Pressure (Pa) 

Wall pressure 

Real-valued coefficient 

Radius of the cylinder 

Distance along the radial direction (m) 

Nanofluid temperature (K) 

Temperature at cylinder surface (K) 

Ambient temperature (K) 

radial velocity (m/sec) 

axial velocity (m/sec) 

Wall velocity 

Velocity of the stretching cylinder 

Distance along the axial direction (m)  

a 
G 
                               
    
    
P 
   
Q 
R 
r 
T 
Tw 
T∞ 
u 
w 
   
   
z 

Greek symbols 

Effective thermal diffusivity of nanofluid 

(m
2
/sec) 

Similarity variable 

Dimensionless temperature 

Dynamic viscosity of the base fluid (Pa s) 

Dynamic viscosity of the nanofluid  (Pa s) 

Kinematic viscosity of nanofluid (m
2
/sec) 

Density of base fluid (Kg/m
3
) 

Density of nanofluid (Kg/m
3
) 

Solid volume fraction of nanoparticles 

    

 
η 
θ 
    

    

    

    

    

Φ 

Subscript                            

Base fluid 

Nanofluid 

Solid Nanoparticle 

Condition at the surface 

Conditions far away from the surface 

bf 
   
sp 
w 
∞ 

Superscript 

differentiation with respect to η ' 
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2. Mathematical formulation 

In the present research, as a function of spatial 

variables z and r, we found a mathematical analysis 

for moving a cylinder with radius R through a two – 

component mixture (homogenous nanofluid) with 

volumetric fraction of nanoparticles. We considered a 

homogeneous laminar nanofluid in two dimensions. 

We further assumed that the nanoparticles in the base 

fluid are locally in thermal equilibrium. The flow 

configurations and the geometry of the problem are 

shown in Figure (1).  

 

Fig.1.The Physical model and coordinate system 

Under the above assumptions, the governing 

equations can be written in the form: 
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The appropriate boundary conditions for this model 

are: 

(i) At the surface of the cylinder (   ) 

 

 (   )    ( )  (   )    ( )                              
 (   )    ( )  (   )                               (2.5)  

 

(ii) Matching with the quiescent free stream (  ∞) 

                                                                                      

  (  ∞)     (  ∞)                                     (2.6) 

 

Where     is the surface temperature of the cylinder 

and    is the ambient temperature. 

Thermophysical properties of nanofluid: 

The physical quantities     (  )        and     are 

the density, specific heat, dynamic viscosity, and 

thermal conductivity of the base fluid while 

    (  )        and    , respectively are the solid 

nanoparticles properties. 

The physical quantities are presented as follows [30]:  

 

       (   )      ,  

(   )  
 (   )  

(   )  (   )                          
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           (       )

          (       )
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Where   is the volume fraction of nanoparticle,     

is the kinematic viscosity and      is the effective 

thermal diffusivity of nanofluid. Thermophysical 

properties are illustrated in Table 1. The dynamic 

viscosity (   ) of pure water is equal to 1.07 mPa s 

and the dynamic viscosity of Kerosene is equal to 

1.92 mPa s.             

Table 1. Physical properties of the base fluid and nanoparticles[31, 

32] 
Physical properties   

(     ) 
   

(     ) 

  

( 
   ) 

Base fluids Water  (H2O) 997.1 4179 0.613 

Kerosene 780 2090 0.149 

Nanoparticles Silver (Ag) 10500 235 429 

Copper (Cu) 8933 385 400 

Alumina 

(AL2O3) 

3970 765 40 

Titanium oxide 
(TiO2) 

4250 686.2 8.9538 

 

The following transformations are used to normalize 

the boundary conditions:  

 

 (   )    ( ) (   )  (   )    ( ) (   )  

 (   )    ( ) (   )   
    

      
                     (2.8) 

 

By using (2.8), the mathematical model and the 

corresponding boundary conditions, (2.1)-(2.6), are 

transformed into: 

 

  
   

  
    

  

  
    

  

  
 

   

 
                   (2.9) 

𝑅 

𝑢𝑤 

𝑟 

𝑧 

𝑢 

𝑤 
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Subjected to: 
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3. Group formulation of the problem 

The governing equations of (2.9) to (2.12) were 

transformed into a system of ODEs with respect to 

the similarity variable. This technique is based on a 

transformation class, that is, one parameter group G: 

 

G:   ̅    ( )    ( )                                      (3.1) 

 

Where S and  ̅ represents the system variables 

before and after the transformation as well as    And 

  are real valued and at least differentiable in the real 

argument(a). The partial derivatives of the dependent 

variables can now be calculated as seen with respect 

to the independent variables:  
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The invariant transformation of (3.3) - (3.6) and 

invariance of boundary conditions (2.13) are used to 

obtain the following results:  
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The group G is of the form:  
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Where G1 is the independent variables and G2 is the 

dependent variables. 

3.1. Group transformation of the system 

According to the fundamental Morgan theorem 

[33], the system of ODEs was obtained from the 

governing equations. 
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Where the coefficients    and   are defined as: 
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3.2. Transformation of the independent variables 

The similarity variable η(z r) was obtained by 

applying the equation (3.15): 
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The general solution of this equation is shown as: 
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Where, the function π (z) will be defined later.  

3.3 Transformation of the dependent variables 

The invariant transformations of the dependent 

variables   ̅    ̅  ̅   ̅  ̅   ̅ and  ̅ inside the 

boundary layer are obtained from the group structure 

(3.14) and the Morgan theorem described in (3.15): 
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3.4. Reduction of the problem to a system of ordinary 

differential equations 

By using similarity variables, the equations from 

(2.9) – (2.12) can now be written as: 

Hence, Eq. (2.9) takes the form: 
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Similarly, equation (2.11) is reduced to: 

 

 
   

        
  

  
    

  

  
 (     )   

   
 

   

  

  
 

 

 

  

  
 

 

                                      (3.30) 

 

Where: 

 

    
     (     ⁄ )

          
     (    ⁄ )

          

     
   

        
                                                     (3.31) 

 

If the coefficients stated by (3.27), (3.29) and (3.31) 

are constants or functions of   alone, the equations 
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(3.26), (3.28) and (3.30) will be reduced to system of 

ODEs. Thus: 
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              (   )     
 

   
   (3.33)   

 

Where,   is a constant and         . 

By substituting for these constants, Hence, Eq. (2.12) 

takes the form: 
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The boundary conditions under the similarity variable 

are: 

 

 ( )     ( )     ( )     ( )     
 (∞)       (∞)     (∞)                       (3.35) 

4. Numerical results and discussion 

In order to analyze the results, the ordinary 

differential equations (3. 26) - (3.34) subject to the 

boundary conditions (3.35) were numerically solved 

using fourth order Runge-Kutta algorithm supported 

by the shooting technique. The parameters of the 

analysis are the effect of volumetric fraction of the 

nanoparticles,  , and the different types of 

nanoparticles. By using water as a base fluid, the 

different types of nanoparticles, alumina (Al2O3) 

silver (Ag), titanium oxide (TiO2) and copper (Cu).  

 

4.1 Effect of nanoparticle volume fraction,    

In these calculations, parameter   represents the 

nanoparticle volume fraction of nanofluid with range 

        . The results showed that increasing 

the volume fraction ( ) of nanoparticles decreases 

the radial velocity (  ) and the peak value of the 

axial velocity( ) as shown in Figures 2 and 3, 

respectively. 

Because increasing the volume fraction ( ) of 

nanoparticles  made some obstacles towards the fluid 

flow .  Following this the related shear stress (  ) 

and (  ) decreases near the cylinder surface and 

increases away from the cylinder surface when   

increases as shown in Figures 4 and 5, respectively. 

Figure 6 shows that the increment in the values of 

volume fraction   decreases the temperature 

distribution. As a result, the heat flux increases when 

  increases as illustrated in Figure 7. Moreover, the 

pressure distribution in the boundary layer decreases 

when   increases as shown in Figure 8. 

 

 
Fig.2 Effect of nanoparticle volume fraction ( ) on 

radial velocity ( ) inside the boundary layer of 

(Al2O3-water) 

 
Fig.3 Effect of nanoparticle volume fraction ( ) on 

axial velocity ( ) inside boundary layer of (Al2O3-

water) 
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Fig.4 Effect of nanoparticle volume fraction ( ) on 

shear stress (  ) inside the boundary layer of  

(Al2O3-water)  

 
Fig.5 Effect of nanoparticle volume fraction ( ) on 

shear stress (  )  inside the boundary layer of 

(Al2O3-water) 

 
Fig.6 Effect of nanoparticle volume fraction ( ) on 

temperature distribution (q) inside the boundary layer 

of (Al2O3-water) 

 
Fig.7 Effect of nanoparticle volume fraction ( ) on 

heat flux (  ) inside the boundary layer of (Al2O3-

water)  

 
Fig.8 Effect of nanoparticle volume fraction ( ) on 

pressure ( ) inside the boundary layer of (Al2O3-

water)  

4.2 Effect of different types of nanoparticles, Ag, Cu, 

TiO2 and Al2O3 

The thermophysical properties of nanoparticles 

are described in Table 1. The physical properties of 

the nanofluids are plotted at fixed value of volume 

fraction        . 

In Figures 9, 10 and 11, we see that the radial 

velocity ( ), the peak value of the axial velocity ( ) 

and the related shear stress (  ) are the highest for 

the titanium-water (TiO2-H2O) nanofluid compared 

to the other nanofluids (Al2O3-H2O, Cu-H2O and Ag-

H2O). On contrary, the highest value of the shear 

stress (  ) is obtained for the silver-water nanofluid, 

but the lowest value is obtained for the titanium 

oxide-water nanofluid as shown in Figure 12. 

Additionally, Figure 13 indicates that the maximum 

temperature value is obtained by adding silver oxide 

to the fluid, while the minimum temperature value is 

obtained by using titanium oxide as a nanoparticle. 

As observed in Figure 14, the results for the heat flux 

are reversed. As shown in Figure 15, the pressure for 

the silver-water nanofluid is the highest pressure 

compared to the other nanofluids. This is because 

silver has the highest value of density compared to 

the other nanofluids, as seen in Table 1. 
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Fig.9 Effect of different types of nanofluids on radial 

velocity ( )  inside the boundary layer  

 

Fig.10 Effect of different types of nanofluids on axial 

velocity ( ) inside the boundary 

 
Fig.11 Effect of different types of nanofluids on shear 

stress (  )  inside the boundary layer 

 
Fig.12 Effect of different types of nanofluids on shear 

stress (  ) inside the boundary layer 

 
Fig.13 Effect of different types of nanofluids on 

temperature distribution (q)inside the boundary layer 

 
Fig.14 Effect of different types of nanofluids on heat 

flux (  ) inside the boundary 
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Fig.15 Effect of different types of nanofluids on 

pressure ( ) inside the boundary layer 

 

Several researchers investigated the flow and heat 

transfer for various values of volume fraction of 

nanoparticles. Additionally, to check its heat transfer 

performance they studied different types of 

nanofluids with various geometries.  

In case of studying of the volume fraction, it was 

observed that increasing of volume fraction ( ) leads 

to decrease the temperature distribution [34-36]. 

Additionally, increasing volume fraction decreases 

the velocity [37, 38]. The same conclusion was 

achieved in the current work for the effect of the 

volume fraction in Figures 2, 3 and 6. 

In case of studying of different types of 

nanofluids, it was observed that the silver has the 

highest value of temperature compared to the copper-

water , alumina-water and titanium- water [18, 39]. 

On the other hand, the highest value of the velocity 

was obtained for the titanium oxide-water nanofluid 

[16, 18] . The same sequence of nanofluids was 

obtained   in this work in Figures 9, 10 and 13. 

Relating to the mentioned studies, we found that 

there is a very good agreement between the obtained 

results and the previous results. 

 

For validation of the numerical method used in 

this study, the present results are compared to the 

results reported by researchers [16, 32, 34] as shown 

in Figs. 16-19. 

 
(a) Ferdows et al. work [16] 

 
(b) Present work 

Fig.16 Effect of different types of nanoparticles and 

water on temperature distribution (q) inside the 

boundary layer when       

 

 
(a) Mohd et al. work [32] 
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 (b) Present work 

Fig.17 Effect of different types of nanoparticles with 

Kerosene as a base fluid on temperature distribution 

(q) inside the boundary layer when       

 
(a) Khan et al. work [37] 

 
(b) Present work 

Fig.18 Effect of nanoparticle volume fraction on the 

velocity of (TiO2- Sodium alginate)  

 

 
(a) Sheikholeslami work [34] 

 
(b) Present work 

Fig.19Effect of different types of nanofluids on 

temperature distribution (q) inside the boundary layer 

when        

Figures 16-19 indicate that there is a good 

agreement with these approaches and thus the 

accuracy of the present used method is verified. 

5. Conclusion 

The flow and heat transfer in water based 

nanofluids surrounding a cylindrical solid pipe were 

studied via group method in this paper. The 

mathematical model of the problem was transformed 

into nonlinear ODEs using similarity transformations, 

which are subsequently solved using MATLAB. The 

results showed the components of nanofluid velocity, 

the shear stress components, temperature distribution, 

the heat flux and pressure distribution. The present 

study concluded as follows: owing to natural 
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convection, presence of nanoparticles decreased the 

value of velocity components, temperature and 

pressure distribution inside the boundary layer. On 

the other hand, the shear stress components far away 

the cylinder surface and heat flux increased as 

volume fraction    increased. 

Nanoparticles with higher friction coefficient on 

the surface of the cylinder have low speed. The 

thickness of thermal boundary layer is related to the 

increase in thermal conductivity of various types of 

nanofluids, while the effect of pressure is related to 

the increase in the density. The volume fraction and 

different types of nanoparticles have more effect on 

the radial velocity and axial velocity. 

Nanofluid type is a key factor in enhancing the 

heat transfer. Titanium oxide–water and silver–water 

nanofluids have the highest and the lowest velocity 

components, respectively, compared to other 

nanofluids. Using silver nanoparticles would get the 

highest value for the temperature and pressure 

compared to the other nanoparticles. 
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