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Ship stability is one of the most valuable operational situations of ships and 

provides essential information on the weather conditions, safety and control ability 

of the ship. To guarantee a ship's sustainability, there is an urgent need to analyze 

and apply the results of vessel manoeuvring dynamics and establish the controller’s 

design thereby assuring the ship’s performance. To address the problem, this study 

introduces a modified form of the linear quadratic regulator (LQR) controller 

design to control and influence the random fluctuations in the system state 

measurements stable results were obtained in the various cases that were tested. 

The controller was robust enough to deal with measurement noise under varying 

circumstances. Considering the vessel's turning radius bend of 300 millimeters and 

the completion of a full turn in 3.5 minutes, the performance of the controller tested 

in a real situation reveals that increasing the controller gains through the values of 

the Q and R (quadratic regulator) matrices affected different parts of the response. 

Furthermore, from the simulation, for every 1 second of simulation time, we have 

20.85 seconds of real-time. The real-time plots provided are 0.24 seconds of 

simulation time. Also, the higher value of the Q matrix coefficients stimulated a 

faster response since the feedback gain increases commensurately. The result is 

significant as it enables naval architects to easily manoeuvre vessels in a 

predictable way which is the effect of this controller design. 
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1. Introduction 
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Ship vessels are critical elements of the maritime 

industry [1, 2, 3]. According to the Nigerian 

government, increased investments are to be made to 

expand to service and capacity of the major players in 

the marine industry [4]. Interestingly, the coastline of 

Nigeria runs roughly 853 km at the boarder of 

Atlantic Ocean, according to Ateme [5]. Furthermore, 

Ateme [5] declared that Nigeria is within the Gulf of 

Guinea area with substantial resources in the 

maritime area of roughly 46,000 km3 and it is a 

strong base for economic prosperity. Therefore, ship 

vessel expansion has excellent prospects [5]. For ship 
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vessels, the control of marine vessel manoeuvrability 

is the most important aspect of safety sustenance [6, 

7, 8]. Effective control means assuring the stability of 

the shipping vessel [9]. So efforts are urgently 

required to analyse and improve the control elements 

of the shipping vessel regarding manoeuvrability 

issues. Unfortunately, the paucity of skilled 

manpower in this area and less research conducted 

makes the concrete determination of control and 

manoeuvrability very challenging. In addition, the 

economy of the marine industry is recently affected 

by the global COVID-19 pandemic experience, 

which shut off activities across the globe for a long 

time [10, 11, 12]. This is also coupled with the global 

economic meltdown in which Nigeria has been 

greatly affected [13]. The so-called ship vessel 

manoeuvrability concerns the initial turning ability, 

which is maintaining a high turning speed, yaw 

assessment capability and a quick stoppage ability to 

turn motion [14].  

   From a practical viewpoint, ship vessel 

manoeuvrability has remained a substantial challenge 

faced by naval architects [14]. Naval architects steer 

a straight course of the ship by using a large rudder 

area [14]. The architect sets the rudder angle at zero 

for the vertical stabilization of the fins and also puts 

it at different angles, creating large swinging 

moments essential for good turning [14]. The 

complexity of ship vessel manoeuvrability makes the 

traditional manual or the experience of the naval 

architect yield low control efficiency [15]. The 

extremely difficult optimisation of the 

manoeuvrability indices seriously restricts the 

enhancement of the efficiency of the manoeuvrability 

[15, 16]. Therefore, the trend is to achieve optimal 

manoeuvrability of ship vessels.  

   Moreover, theoretically, studying the ship vessel 

manoeuvrability problem is exceptionally 

challenging [15, 16]. However, to simplify the 

situation, manoeuvrability could be described as a 6-

degree-of-freedom multiple input, multiple output 

dynamic system [17, 18, 19]. Then the state space 

analysis is deployed for optimal control [20, 21]. 

Nonetheless, according to the in-depth research 

recently, the academic and marine fields reveal that 

the results on the ship vessel manoeuvrability highly 

concentrated on human initiatives and experience and 

there is no mature technical solution to analyze ship 

vessel manoeuvrability where the influence of 

random fluctuations in the system state 

measurements could be monitored [14]. 

   In this article, a modified form of the linear 

quadratic regulator controller design is proposed to 

control and influence the random fluctuations in the 

system state measurements. The main contributions 

of this article are as follows:  

1. A method based on a linear quadratic regulator-

based control system is proposed to stabilize an 

unstable vessel and track the reference inputs 

with satisfactory performance.  

2. The Q and R matrices are considered in a steady-

state solution to the matrix algebraic Riccati 

equation.  

3. The method enables naval architects to design 

unstable hull forms, which are generally easier to 

manoeuvre. 

 

   The objectives of this work are three-fold: First is 

to develop a linear state-space marine vessel model 

with manoeuvrability; second is to design a Linear 

Quadratic Regulator (LQR) based control system for 

stabilizing the model and tracking a required 

response; and third is to verify the performance of the 

controller with varying inputs. Section 2 presents a 

review of the literature on ship dynamics and 

modelling methods. This section also focuses on 

control system design using the Linear Quadratic 

Regulator approach. Section 3 presents the problem 

definition and the design methodology for solving the 

problem. In section 4, a summary of relevant results 

and guides to their interpretation are presented. The 

results are analysed and discussed. Section 5 is the 

conclusion, including recommendations and 

identifies open areas of research.  

 

2. Literature review 

 

   In the literature concerning the present subject, 

some efforts have been made on manoeuvring and 

controlling ship vessels. These efforts are reviewed 

here to create a basis for the identification of gaps 

that strengthens the pursuit to analyse the control of 

ship vessels discussed in the present work. 

Furthermore, given the increasing pressure to be 

safety aware offshore and the increasingly difficult 

opportunities to repair and/or replace components or 

the whole ships, it is unsurprising that ship 

manoeuvring is increasingly being scritunized but the 

knowledge accumulation in the area is still relatively 

low. Ship manoeuvring is a clever idea that embraces 

many aspects of human endeavour: mechanical 

engineering, wind studies, electrical controls, water 

resources engineering among others. Therefore a 

detailed account of the literature is given in the 

present study and follows. 
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2.1 Manoeuvrability and controllability of vessels 

 

   In terms of maneuvering, Piaggio et al. [9] 

proposed a new model to evaluate the heel influence 

in maneuvering in surface vessel, using an extended 

twin-screw model using the heeling angle as an input 

that incorporates the zig-zag IMO margins and 

turning. Wang et al. [23] modelled the dynamics of 

shipping vessels with a knowledge transfer policy for 

the adaptation of domain knowledge to a focused 

ship. A data-driven function was the backbone of the 

model coupled with a featured vector and the whole 

model predicts the trajectories of maneuvering in 

diverse situations. To clarify Table 1 lists the 

previously discussed articles on manoeuvrability and 

controllability of vessels and some details about the 

work in comparison with the present study. To 

compare the present study with the previous ones, the 

current study uniquely and innovatively deploys a 

modified version of the linear quadratic regulating 

controller design to establish the manoeurability of 

marine vessels which provided a rough controller 

capable to tackle the measurement noise subjected to 

diverse situations. 

 
Table 1. A summary of some studies representing manoeurability of ship vessels 

Reference Method Essential factors 
Piaggio et al. [9] Modified twin-screw model Kijima’s single-screw container vessel model, heeling angle, transverse 

stability, loading conditions 

Wang et al. [23]  Ship maneuvering model knowledge transfer strategy model, data-driven transfer function, 

feature vector, reflective ship state, transfer ship predictions 
Wang et al. [15]  Deep neural networks oriented 

maneuvering model 

Data driven method, voyage data recorder, duration of ship voyage 

Liu et al. [22]  Network control system Positioning, velocity, altitude, time 
Wei et al. [24]  Recognition algorithm Automatic identification system, joint probability density function, ship 

traffic rules 

Lu et al. [25]  Computational fluid dynamics and 

empirical models 

Advanced coefficients, rudder angles, polynomial regression method 

The present paper Modified linear quadratic regulating 
controller 

Yaw response, matrix weights, controller performance indicator 

 

   Moreover, many motions characterize a vessel's 

overall motion. There are motions induced by 

environmental factors such as wind and waves, 

motions due to the propulsive devices, motions due to 

the cargo if, for example, the vessel is carrying a 

large amount of liquid with a free surface, and there 

are motions due to control elements such as rudders 

and fins. Manoeuvring involves the motions of a ship 

as a result of action taken by some control 

mechanism e.g. the autopilot or the helmsman [26]. It 

can be defined as a controlled change of course and 

its characteristic time length spans over a few 

minutes [26]. This time length also serves to 

distinguish manoeuvring problems from seakeeping 

ones which have characteristic time lengths of a few 

seconds. Seakeeping problems involve the motion of 

the vessel in waves [26]. Traditionally, manoeuvring 

problems have been studied on the assumption that 

the vessel is operating in calm water conditions 

though for modern applications seakeeping 

characteristics have been incorporated in the vessel 

models to give more realistic results [27]. 

   In considering the manoeuvrability of vessels there 

are certain important considerations as presented in 

Papoulias [26]. These are course stability, turning, 

slow speed operation and stopping. Course stability 

refers to the ability of a vessel to maintain a straight 

course without any control input while turning 

involves a change of course due to control inputs. 

Slow speed operation was earlier discussed, where it 

was mentioned that the rudder loses its effectiveness 

as a primary control device at low speeds and 

stopping generally involves bringing the vessel to a 

halt by a combination of methods which could 

involve the propeller reversal. Of the considerations 

mentioned above, turning and course stability have 

very differing requirements. A very stable vessel will 

be hard to turn. However, an unstable vessel gets 

turned easily. Coupled with this, it may turn itself as 

a result of external disturbance. Generally it is 

desirable for a vessel to be able to keep a straight 

course without control inputs (fixed course stability) 

moreover, by developing fuller vessels as well as 

open sterns, which enhances propeller-generated 

vibration, course unstable vessels have subsequently 

been developed and operated with success for a while 

now [26]. 
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Figure 1: Ship controllability and manoeuvrability loop [26] 

 

   For this work the focus will be on the ship block 

(Figure 1) and its response to signals which may be 

control inputs or external disturbances. The autopilot 

block is also considered from a control systems 

perspective to improve the response of the vessel to 

inputs and for stabilization. The modern approach to 

manoeuvring involves a combination of classical 

manoeuvring and seakeeping. To achieve this, the 

models for ship motion control system design 

generally use superposition of motion or forces [27]. 

The most popular is the motion superposition method 

(Figure 2) which has an easier implementation but 

has the drawback that it cannot be used for cases 

where there are parameters in the study that involve 

the effect of one vessel on the other i.e. multibody 

system interactions and the manoeuvring part does 

not incorporate fluid memory (viscous) effects that 

are included in every real fluid. Indeed, the radiation 

forces due to the frequency-dependent mass and 

damping of the ship are only considered in the 

seakeeping model. This results in miss-modelled 

dynamics, which are of interest for ship motion 

control in a seaway [27]. 

 

 
Figure 2. Motion superposition model of a marine vessel [27]. 
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Figure 3. Force superposition model of a marine vessel [27] 

 

The force superposition model (Figure 3) is generally 

more accurate in simulating ship motion in a variety 

of environments but is not as easily adaptable to 

control system design. 

 

2.2 Modelling ship dynamics 

In Figure 4, two major reference frames are 

introduced for the description of vessel motions.  A 

vector in the inertial frame is denoted x , while that in 

a body reference frame is denoted by ox . The body-

referenced frame moves along with the vessel and is 

more convenient for representing the vessel's motions 

thus motions are usually referred to it. The two 

frames in the general case have entirely different 

origins and could also have different orientations. It 

is necessary to have a means of transforming motions 

from one frame to the other. To achieve this, the 

Quaternions and Euler angles methods could be used 

[27].

  

 
Figure 4: Standard notation and sign conventions for ship motion description (SNAME, 1950 [28]) 

 

   

In Figure 4, the symbols P, k, q, H, r and N are the 

ship’s motion variables. Moreover, quaternions are 

numbers with special properties that make them very 

elegant for dealing with spatial rotations [29]. 

Quaternions are used as mathematical notations to 

denote orientations and rotations of objects. Users in 

robotics, orbital mechanics of satellite, computer 

graphics and global navigation have widely used 

quaternions because of their efficiency, compactness 

and stability benefits compared with matrices [30]. 

They however require a very high level of 

mathematical abstraction to deal with. Euler angles 

are preferred in this context because of their relative 

ease of application and intuitiveness; successive 

rotations correspond to the traditional notions of roll, 

pitch and yaw.  The main shortfall of the method is 

that there are specific values for which the 

transformation exhibits discontinuities. 

   The Euler angle approach involves applying a 

series of successive rotations to the axes of a 

reference frame and concatenating the rotation 

matrices [31]. To find the coordinate of a point fixed 
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in inertial space referenced to a rotated body frame 

we require a transformation in the form of a 3 x 3 

matrix derived through successive rotations of the 

three Euler angles. At the initial point, the 

coordinates are assumed coincident and identical i.e. 

x  x0

0


 . After the sequence of rotations, the 

transformation matrix is found as,

 

x 

coscos

cossin-

sin

sinsincos  cossin-

sinsinsin  coscos

sincos

cosscos  sinsin

cossinsin  sincos-

coscos

  x0













































, 

or  x  , , R x0


         (1) 

The transformation matrix    , ,R  is 

orthonormal i.e. its transpose is equal to its inverse 

and this representation of R is universal to all 

representations of orientation.  In the general case of 

non-coincident origins, we can write first: 

0

TxR  x


    (2) 

and then 

0

T

0,0 xR  x  x


   (3) 

where 0,0x


is the coordinate of the body referenced 

frame expressed in inertial coordinates. It is also 

desired to have a mapping for transforming the rate 

of change of the Euler angles into the angular 

velocity of the body. This is obtained as, 




















 

cos
c

sin-

 tanc

cos
sin

cos

 tansin

0

0

1

  
dt

Ed





















os

os

     (4) 

  =  


  , ,   

The matrix    , ,   is the required mapping that 

maps 


  to the rate of change of Euler angles
dt

Ed


.  

Because of division by cos, there are singularities at 

2

3
 ,

2
  


   and these should be avoided, usually by 

choosing the orientation such that the angles are not 

on the yaw axis (see Appendix for the derivation of 

results). 

 

Vessel Motions 

   In general, a ship is described as a rigid body with 

motions in six (6) degrees of freedom (6DOF). These 

involve three translations: surge, sway and heave 

corresponding to the x0, y0 and z0 axis and three 

rotations: roll, pitch and yaw about these same axes 

respectively (see Figure 4). From calm water 

manoeuvring assumptions, the motions are assumed 

to be predominant in surge, sway and yaw.  The 

descriptions of the body's motion can be done by 

Newton’s second law.  We define the inertial frame 

as (x0, y0, z0) for convenience and the vessel-

referenced frame as (x, y, z).  From Newton’s second 

law in the inertial frame: 

 















N  I

Y  ym

X  xm

z

00

00







  (5) 

where X0 – total force x0 direction 

Y0 – total force in y0 direction 

N – turning moment around z0 axis 

m – m6x6 ship/vessel mass 

Iz – the mass moment of inertia about z0 

 - yaw angle wrt x0 axis 

Using the body-referenced coordinate system; we can 

carry out the following transformations. 













cos Y  sin X-  Y

sin Y  cos X  X

00

00
 (6) 













 vcos usin  y

 vsin- ucos  x

0

0




 (7) 

Differentiating Equation (7) and noting that r    

gives upon making the necessary substitutions, 

 

 














N  rI

Y  ur  v m

X   vr- u m

z






  (8) 

If the axis (x, y, z) is located at some other point 

different from the centre of gravity, e.g. amid ships 

due to geometric considerations, then, 

68



EIJEST Vol.45 (2024) 63–90 

 
 

  













N ur  v mx  rI

Y  r xur   v m

X  r x- vr - u m

Gz

2

G

2

G







 (9) 

   Equation (9) can also be derived using our previous 

developments with rigid body dynamics. (See [26]) 

for details of the derivations). Centrifugal forces 

show up when the motions of the body are referenced 

to the moving axis.  They do not exist for inertial 

coordinate frames. 

   The total forces X, Y and N are built up of different 

types of forces that act on a ship during a manoeuvre. 

These can be decomposed as 

- Fluid forces acting on the hull due to surrounding 

water, subscript F. 

- Control forces due to rudders, diver planes, 

thrusters, subscript R 

- Environmental forces due to wind, current, or 

waves, subscript E 

- Propulsive forces, T 

We can then write, 

 X = XF + XR + XE + T  (10) 

 Y = YF + YR + YE   (11) 

 N = NF + NR + NE   (12) 

   The forces represented by Equations (10), (11), and 

(12) can be estimated by some methods. Prominent 

among these are [32]: 

 Module square expansion 

 Taylor series expansion (linear and non-

linear) 

Taylor series methods involve the expansion of each 

of the forces as a Taylor series. Depending on the 

degree of accuracy required, higher-order expansion 

terms are either retained or dropped. Reviews of the 

linear and non-linear Taylor series expansions for the 

force estimation are provided next. 

 

2.2.1 Linear models 

For the expansion, only linear terms or first-order 

derivatives are considered under the linear vessel 

dynamics approximation. This is suitable for calm 

water, low wave frequency manoeuvres and moderate 

speeds. The fluid or hydrodynamic forces, XF, YF and 

NF are dependent on the vessels motion and are 

functions of the ships velocities and accelerations 

relative to the water i.e. 

  r ,v ,u r,  v,u, X  X FF
  (13) 

  r ,v ,u r,  v,u, Y  Y FF
  (14) 

  r ,v ,u r,  v,u, N  N FF
  (15) 

The actual functions represented by Equations (13), 

(14), and (15) are quite complex but the scope of the 

work can be derived by considering a linear Taylor's 

series expansion about some nominal point (U, 0, 0) 

where U is the vessels forward velocity along the x-

axis. We can write:

 

   r
r

X
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X
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
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Even for non-zero values of v and r, due to the usual symmetry about the midplane of a vessel, the derivatives 

r

X
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r

X
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v

X
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v

X FFFF

 














 are identically zero. 
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and 

   r
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N
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u

N
  N FFFFFF
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From symmetry about the x-z plane or port/starboard symmetry, the derivatives with respect to u, u  are zero.  

Hence we can write: 

r
r

Y
  v

v

Y
 r 

r

Y
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v

Y
  Y FFFF

F



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(21) 

69



 Oluseye Adebayo Owolabi,et.al / An Analysis of Marine Vessel Manoeuvrability Using a Modified Linear Quadratic Regulating 

Controller Design to Enhance Performance 

We can make the equations less cumbersome by 

denoting derivatives by subscripts indicating the 

variable with respect to which the operation is carried 

out e.g. Nv  
v

NF 



 

Considering the forces due to controls working, in 

this case, the rudder, and assuming that the rudder 

force is a function of the rudder angle  and 

neglecting any forces due to the rate of change of the 

rudder angle  i.e. steady states, we can write: 

    0  
X

  0X  X R
RR 




 


   (22) 
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

   Y  
Y

  0Y  Y R
RR 




  (23) 

And 
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

   N  
N

  0N  N R
RR 




  (24) 

Neglecting environmental disturbances and 

propulsive forces the linearized surge, sway and yaw 

equations of motion are: 

    U- u X  u X - m uu                 (25) 

     r mX - Y - v Y - m Grv
 

  r mU - Y  Y   vY rv                  (26) 

     v mX - N - r N - I Gvrz
     

  r UmX - N  N   vN Grv              (27) 

It can be seen that the surge Equation (25) is 

decoupled from the sway and yaw Equations (26) and 

(27). This implies that the longitudinal dynamics do 

not affect the turning characteristics as such.  These 

equations represent the linearized system dynamics 

of a vessel and can be converted for control system 

design. An important feature of this linear model is 

the stability of the vessel which is considered next. 

 

Stability of the Sway/Yaw System: Straight-Line 

Motion 

Stable straight-line motion is very important in 

consideration of course stability or path-keeping.  

There are different types of stability possible and 

associated with marine vessels 

1. Dynamic stability/straight-line stability 

2. Directional stability 

3. Positional stability 

For a self-propelled vessel, the only kind of motion 

stability possible is dynamic stability. However, in 

the vertical plane, surface vessels also possess 

positional stability. It can be shown that, for stability, 

given a stability coefficient C, 

C = Yv Nr + Nv (mU – Yr) > 0  

     (28) 

 For non-zero xG,  

C = (Nr – mxGU) Yv – (Yr – mU) Nv > 0 

    (29) 

This is the stability criterion.  The more positive C is, 

the more dynamically stable the vessel is and the 

harder it is to turn.  This is the conflicting 

requirement stated in Section 2.1. 

 

2.2.2 Non-linear models 

   The linear analysis is valid only for small angles of 

attack of the rudder  and turning rates [26]. It fails 

however to predict accurately the manoeuvres of 

directionally unstable ships (C < 0) which are in 

existence (usually controlled using active feedback 

systems) [26]. It also fails to predict the 

characteristics of the tight manoeuvres that most 

vessels are capable of performing as this requires 

non-linear inertial components and hydrodynamic 

terms.  Also, under the linear assumption, the surge 

equation is decoupled from the sway and yaw 

equation.  The assertion that horizontal plane motions 

do not affect a vessel's forward speed is not 

necessarily true as high-speed military vessels have a 

substantial speed reduction in their turning 

manoeuvres.  The non-linear equations coupled surge 

to the other motions are hence predicted the speed 

reduction in turning [26]. 

   Using our previous method of Taylor's series 

expansion, non-linear terms can be included in the 

equations by keeping second and third-order 

velocity-dependent terms in Taylor's expansion.  

Higher-order terms (i.e. of the order of four) are not 

usually included as they have insignificant effects in 

practice [26]. The non-linear equations of motion are 

presented here for completion; 

   

     
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
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 r,  v,u,f r mx - rY - v v Y- m

 r,  v,u,f  u uX - m

3G

2G

1
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
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                                                                           (30) 
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


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


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    2

rru

2

vuu

2 r  U-u X 
2

1
   v U-u X

2

1
  X

2

1
  

      vX  vr m  X     U-u X
2

1
 vvr

2  u

 

      v U-u X  vr  U-u X  rX vduvrur 

   r  U-u X r u
   (31) 

   r,  v,u,f2 

    vY   U-u Y   U-u Y  Y v

2

ouuouo   

2

r

2

vrr

3

vvv vY 
2

1
  vrY

2

1
  vY

6

1
 

 

      r mU -Yr  v U-u Y
2

1
   v U-u Y 

2

vuuvu 
 

  r  U-u Y  rY
2

1
  rvY

2

1
  rY

6

1
 ru

2

r

2

rvv

3

rrr  

  2

vv

32

ruu vY
2

1
  Y

6

1
  Y r  U-u Y 

2

1
   

     

2

uuu

2

rr  U-u Y
2

1
   U-u Y  rY

2

1
 

 

   
 vrY vr

 (32) 

   r,  v,u,f3    

    vN   U-u N   U-u N  N  v

2

ouuouo 

2

r

2

vrr

3

vvv vN 
2

1
  vrN

2

1
  vN

6

1
 

 

      r Umx -Nr  v U-u N
2

1
   v U-u N G

2

vuuvu 

  r  U-u N  rN
2

1
  rvN

2

1
  rN

6

1
 ru

2

r

2

rvv

3

rrr  

     

2

uuu

2

rr  U-u Y
2

1
   U-u N  rN 

2

1
 

 

    vrN rr  (33) 

   T and R represent the propulsive thrust and added 

resistance respectively and the terms with subscript 0 

represent the effects of the propellers on the turning 

moment and lateral forces. The Equations (31), (32) 

and (33) are often referred to as the 'coefficients of 

the equations of motion' and are usually obtained by 

curve-fitting actual data. In Equation (31), the extra 

terms model added resistance due to the ship's 

turning motion and rudder action. Unless balanced by 

an increase in propulsive thrust, these terms will 

cause speed loss during turning. This model gives 

good correlations with experimental measurements. It 

is however not as easily amenable to control system 

design as the linear model. 

 

2.3 Linear optimal regulator design for control 

system applications 

   In general, a vessel can be represented as a 6DOF 

multiple input, multiple output (MIMO) dynamical 

systems. Classical control system analysis has 

generally been focused on single input, single output 

(SISO) systems. For this reason, in modern control 

theory, state space models of systems and controller 

synthesis methods based on state space models have 

wide applications. A dynamic system containing a 

finite number of masses or lumped parameter 

equivalents may be described by ordinary differential 

equations in the time domain [33]. Using vector-

matrix notation, an nth-order differential equation 

may be represented by a first-order vector-matrix 

differential equation reducing the complexities 

associated with analytical treatments of higher-order 

differential equations. 

   One particular class of control system design based 

on state space analysis is optimal control. In optimal 

control, the search for a control law for a system is 

achieved in a way that a particular optimality 

condition is attained. A function of state as well as 

control variables is the components of the cost 

functional, which is a control problem. To define an 

optimal control, we mean a set of differential 

equations explaining the paths of the control 

variables, which minimizes the cost functional. By 

using the Pontryagin's maximum principle (which is 

a necessary condition), or proceeding on solving the 

Hamilton-Jacobi-Bellman equation (which, is a 

sufficient condition), the optimal control can be 

safely derived [30] and these all belong to a class of 

analytic methods known as variational calculus. 

There are various forms of optimal control depending 

on the aim of the designer. Five different types have 

been identified in Burns [34]. 

1. Terminal control problem: this is to bring the 

system as close to the terminal point as possible 

within a given period. 

2. Minimum-time control problem: this is to bring 

the system to the terminal state in the shortest 

time possible. 

3. Minimum – energy control problem: this is to 

bring the system to the terminal state with the 

least expenditure of control energy. 

4. Regulator control problem: this is to restore the 

system to an equilibrium state after an initial 
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displacement while minimizing a particular 

performance index. 

5. Tracking control problem: this is used to cause 

the system to track a desired trajectory while 

minimizing a given performance index. It is a 

generalization of the regulator control problem 

with a constantly changing reference. 

   The decision on which performance index to use 

will depend on the type of control problem at hand 

and the objectives of the designer. In many cases, it is 

conceivable that a combination of the problems listed 

above may be necessary and tradeoffs might be 

required if there are conflicting requirements e.g. 

minimum - time and minimum – energy requirements 

might be difficult to meet simultaneously. 

   In general, state and control variables are usually 

expressed as vectors and matrices using state space 

formulations. The control and state matrices can then 

be squared and combined with weighing matrices 

indicating the relative importance of the state output 

and the control effort in what is known as a quadratic 

performance index [34].  
 

   dt)( J 
t

0

T

  RuuQxx
T

   (34) 

 

J is the performance index and is always a scalar 

x is the state vector 

u is the control vector 

Q and R are the state and control weighing matrices 

respectively and are always square and symmetric. 

   Quadratic performance indices are commonly used 

because they have the advantage of giving a linear 

control law of the form 
 

 )(-  )( tt Kxu     (35) 

 K is the error gain matrix. 
  

  The linear quadratic regulator (LQR) design 

approach gives such an optimal control law for a 

linear system with a quadratic performance index 

(see Figure 5). Its cost functional is thought in terms 

of penalizing the control energy measured as a 

quadratic form and the time it takes the system to 

reach zero-state [35]. The system works by driving 

the output of the system to a zero state from a 

response to a disturbance. Once the system can 

function to drive the output to zero, then it can be 

made to achieve any other desired output [35]. 

 
Figure 5: Linear Quadratic Regulator Design with 

Static Feedback Gain Matrix K 

 

   The term state regulatory problem is often used for 

optimal control problem established by the previous 

functional J(34). The corresponding solution is the 

Linear Quadratic Regulator (LQR) with no more than 

a feedback matrix gain, expressed as 
 

 )(-  )( tt Kxu     (36) 
 

K is a properly dimensioned matrix and solution of 

the continuous time dynamic Riccati equation (see 

[34] for derivations of the LQR solution). 

 

3. Methodology 

3.1 Problem definition 

State space representation of the vessel 

   Earlier, the manoeuvring dynamics were presented 

as Equations (25), (26) and (27). If we write the sum 

of all the control forces in the X, Y and N equations 

as X’, Y’ and N’, then we can remove the rudder 

force Yδδ and moment Nδδ as they are already 

included in Y’ and N’. This allows us to include 

effects such as those that might be due to the modern 

control elements. The system dynamics then become, 

  X'  uX  u X - m uu                (37) 

     r  YmX  v Y - m rGv
      

  Y' r  mU - Y   vY rv     (38) 

    - r N -Iv N-mX rzvG
    

   N'r UmX - N   vN  Grv    (39) 

Let 
Tr]  v[u x  , 

T]r v u[  x   , 

T]N'  Y'[X'  u  , 
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and 






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









UmX - NN0

mU - YY0

00X 

  P

Grv
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u

. 

Then Equation (36), (37), and (38) can be written as, 

u MPx  M x -1-1     (40) 

Or if P M A -1 and
-1M B  , then 

 BuAx   x     (41) 

 Cx y     (42) 

   Equation (40) is the state–space representation of 

the vessel and Equation (41) is the observation 

model. A MATLAB script is used to convert the 

hydrodynamic parameters into a state space model as 

described in the mathematical formulation. Table 2 

shows the values of the hydrodynamic derivatives 

used in the calculations as obtained from Tristan et 

al. [36]. The values of the hydrodynamic parameters 

are usually normalized to make them amenable for 

use in different-sized ships with similar hull 

configurations. 

 
Table 2. Values of hydrodynamic coefficients for a mariner vessel used in the calculation of the state space matrices. 
 

Hydrodynamic  

coefficient 

Normalised  

value (x 10-5) 

Hydrodynamic  

coefficient 

Normalised  

value (x 10-5) 
Xv 184 Nr 166 

Xv -42 Yv 748 

Yv -1160 
rY  

9.354 

Y  
499 Nv 4.646 

Nv 264 Nr -43.8 

 

The values of the matrices A and B and C are 
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A SIMULINK model of the system of the vessel was then developed and its response to a step input was analyzed. 

The responses are presented in Figure 6.  
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Figure 6: Step responses of mariner's vessel over 0.2 seconds showing a rapid divergence from reference values for 

v and r. 
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Figure 7: Ramp response of mariner's vessel for 0.2 seconds showing a divergence from reference values for v and r 

 

   Figure 6 represents the response for step inputs of 

0.1, 1 and -0.5 to the three inputs u, v and r for 0.2 

second. The rapid divergence of the Y and N plots 

indicates an unstable system. Though the mariner 

hull form presented in Tristan et al. [36] is generally 

stable, using a linear approximation yields the 

unstable response presented in Figure 6. Figure 7 is 

the ramp response of the vessel. The response is 

unstable for both the Y and N plots. The X plot does 

not show remarkable deviations because its weighing 

is much less than those of the other directions and 

control forces are generally not very large in the x – 

direction during manoeuvring motions. The forces 

are sometimes taken as zero when it is assumed that 

only rudder forces are in action. Also, the x – 

direction is uncoupled from the other two directions 

so the X response is independent of the Y and N 

responses. 

   As discussed earlier, though course stability is 

desirable, it is possible to operate an unstable vessel 

as long as active feedback is employed [26]. A design 

for an optimal controller is presented next in Section 

3.2. 

 

3.2 Control system design and Application 

For a multiple input, multiple outputs (MIMO) 

system such as this, there are many types of 

multivariable controllers available for stabilizing the 

output [34]. Some of them are 

 State Feedback Control (SFC) 

o Robust Eigenstructure Assignment 

(Direct Pole Placement) 

o Linear Model Reference Control 

o Optimal Control (Linear Quadratic 

Regulator) 

o Adaptive Control (Minimal Control 

Synthesis) 

 State Feedback Control with Integral Action 

(SFCIA) 

 Luenberger Observer 

 Output Feedback Control (OFC) 

 Output Feedback Control with Integral Action 

(OFCIA) 

   For this work, the optimal control approach is used. 

A review of the Linear Quadratic Regulator (LQR) 

was already provided in Section 2.2, but for tracking 

performance as opposed to regulator performance, a 

modification is made to the block diagram of Figure 

2.5. Such an arrangement is shown in Figure 8 and is 

known as a Linear Quadratic Tracker [34]. 

Figure 8: Block diagram of a Linear Quadratic 

Tracker 
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   This design approach requires all the states to be 

available for control and the plant parameters A and 

B to be known [37]. This is the case in the model 

being used for this simulation. In a real-world 

scenario, it would not be difficult to make 

measurements of u (velocity in the x – direction), v 

(velocity in the y – direction) and r (the yaw rate) 

available to the controller. The control law is given 

by Equations (36) and (37). Equation (36) differs 

from Equation (35) by the inclusion of a gain KR 

(acting on the reference) that modifies the control 

dynamics from that of a regulator to a tracker. K is 

the same as that obtained from the solution of the 

LQR problem. Equation (37) is the closed-loop 

dynamics of the system. KR is given by Equations 

(38) and (39). Then, Q and R are the weighing 

matrices discussed in Section 2.3 and are initially 

chosen as 3 x 3 identity matrices. The system showed 

satisfactory performance with these values. The 

model was implemented in the SIMULINK 

environment. The block diagram of the setup is 

presented in Figure 9. 

 

 
Figure 9: SIMULINK model of the control system design 
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Figure 10: Step responses u, v and r of mariner's vessel over 0.2 seconds  

showing rapid convergence to reference values 

 

Figure 10 represents the response for step inputs of 

0.1, 1 and -0.5 to the three inputs u, v and r for 0.2 

seconds. These plots show fast convergence to the 

step value for all the outputs indicating good tracking 

performance. Comprehensive plots of the system to 

different standard inputs are presented in the next 

section. 

 

4. Results and discussion 

 

4.1 Results 

   The following results are obtained from simulations 

in the MATLAB SIMULINK environment. See 

Appendices for the m – files used in creating the state 

space system and calculating the controller gains. It 

should be noted that the simulation time is not 

equivalent to real-time because of the normalization 

of the hydrodynamic parameters. The plots are hence 

presented in real-time by converting them with a 

factor equivalent to L/U, where L (160.93m) is the 

length of the vessel and U (7.7175m/s or 15 knots) is 

the nominal forward speed of the vessel as presented 

in the mariner m – file included in Tristan et al. [36]. 

Hence for every 1 second of simulation time, we 

have 20.85 seconds of real-time. The 5-second real-

time plots provided correspond approximately to 0.24 

seconds of simulation time. The plots are generated 

for different values of the LQR weighing matrices Q 

and R to show their relative importance in 

determining the speed and other transient 

characteristics of the response such as percentage 

overshoot, rise time, and settling time with reference 

inputs of 0.1, 1 and -0.5 for the x (surge) direction, y 

(sway) direction and the rotation N (yaw) about the z 

direction. These terms are collectively referred to as 

step response performance specifications [34] and are 

illustrated in Figure 11. Plots of the control inputs 

necessary to achieve the given step response 

performance are also provided to illustrate the 

controller action. 

Figure 12 is derived for the following values of Q 

and R, 
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Figure 11: Step response performance specifications [37]. 

 

0 5
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

time (s)

a
m

p
lit

ud
e

Step responses u, v, and r

u - ref v - ref r - ref u v r
 

Figure 12: Step responses of mariner's vessel over 5 seconds 
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Table 3: Step response performance specifications for Figure 12 
 

Specifications u v R 
Overshoot (%) 0 0 17.29 

Rise time (s) 1.2 2.0 0.4 

Settling time (s) 1.2 2.0 2.1 
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Figure 13: Control Inputs to the system to achieve the response of Figure 12 

 

   Essential details are also shown in Table 3, Figures 

12 and 13. But Figure 14 was derived for the 

following values of Q and R chosen to illustrate the 

effect of increasing the values of the Q matrix 

coefficients. See also Table 4 for additional 

information related to Figure 14. In general the 

higher the value of the Q matrix coefficients, the 

faster the response since the feedback gain increases 

commensurately. 
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Figure 14: Step responses of mariner's vessel over 5 seconds showing the effect of increasing the feedback gains 

through Q 
 

Table 4. Step response performance specifications for Figure 14 
 

Specifications U V R 

Overshoot (%) 0 0 15.37 
Rise time (s) 0.2 0.5 0.1 

Settling time (s) 0.2 0.5 0.5 
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Figure 15. Control Inputs to the system to achieve the response of Figure 14 

 

The effect of increasing the R matrix coefficients is 

to improve the damping characteristics of the 

controller at the expense of a reduction in the speed 

of the response. By choosing an appropriately high 

value, it was possible to eliminate the overshoot in 

the r (yaw) response as shown in Figure 16. See also 

Table 5. 
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Figure 16. Step responses of mariner's vessel over 5 seconds showing the effect of increasing the R matrix coefficients 
 

Table 5. Step response performance specifications for Figure 16 
Specifications u v R 

Overshoot (%) 0 0 0 

Rise time (s) 1.2 1.4 1.2 
Settling time (s) 1.2 1.4 1.2 
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Figure 17: Control inputs to the system to achieve the response of Figure 14 
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   To test the robustness of the controller, its response 

when measurement noise was introduced into the 

system was investigated. The noise was modelled as 

a Weiner process [38].  

n(t) )( t    (43) 

)(t is the time derivative of the noise and, 

n(t) is a random/stochastic function, in this 

case, band-limited white noise. 

The plot of the response is shown in Figure 18. Using 

the same values of the Q and R matrices, the 

performance of the system to two other types of 

input; ramp and sinusoidal, was investigated. The 

reference weighting remains as before. The ramp 

input has a slope of 1. The response plots and the 

control inputs necessary to achieve them are 

presented in Figures 20 and 21. The sinusoidal input 

has a frequency of 30 rad/s. The amplitudes for u and 

r are 1 and 0.1 respectively. The amplitude for r is 0.5 

but is 90 degrees out of phase with the other inputs. 

The plots of the reference and the control effort 

necessary to achieve this are presented in Figures 20 

and 21. 

   As a final check of the controller's performance, the 

vessel's motion – due to a step response, in fixed or 

inertial coordinates X and Y was investigated. For a 

stable vessel, the resultant motion should be turning a 

full circle [26, 31]. The following plot, Figure 22 was 

obtained (see Appendices for SIMULINK block 

diagram of the time series generator). The axes are in 

meters and the motions have been converted from 

non-dimensional form by multiplying by L 

(160.93m). The equations for conversion from body-

fixed coordinates to inertial coordinates are, 













 vcos usin  y

 vsin- ucos  x

0

0




 (44) 

Once the two derivatives were evaluated, their 

integration gave the required time series motion.
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Figure 18. Step responses of mariner's vessel over 5 seconds showing controller performance with 

measurement noise 
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Figure 19: Control inputs to the system to achieve the response of Figure 18 
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Figure 20: Ramp responses of mariner's vessel over 5 seconds showing minimal steady-state errors and mild 

oscillations in following the reference. 
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Figure 21: Control inputs to achieve the response of Figure 20 
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Figure 22: Responses of mariner's vessel to sinusoidal inputs over 5 seconds showing marked steady-state errors and 

practically no oscillations in following the reference. 
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Figure 23: Control inputs to achieve the response of Figure 22 

 

 

 
Figure 24. Mariner vessel executing a full turn as a response to a step rudder input over 3.5 minutes 

 

4.2 Analysis of Results 

   There were two main objectives of controller 

design; stabilization of an unstable system and 

reference tracking. For stabilization, as Figures 12 to 

20 indicate the controller was successfully able to 

achieve that aim. While Figure 6 shows rapidly 

diverging plots for step inputs, the plots in Figures 12 

to 20 present a converging response indicative of a 

stable system. The reference tracking performance 

however varied depending on the choice of the 

controller gains. One other characteristic of a good 

control system is robustness in the presence of 

uncertainties. This was tested by introducing noise in 

the measurement of the system states, the control 

system still performed satisfactorily as shown in the 

plot Figure 8. However, there were minor oscillations 

in the step value. 

Controller Performance Dependence on Q and R 

Though the control inputs were unconstrained in the 

derivation of the optimization problem, a saturation 

block was used in the simulations to limit the control 

forces input into the system, this was to test the 

performance of the controller in a real situation 
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where there will be limits as to what values the 

control forces on the system can attain. It was found 

that increasing the controller gains through the values 

of the Q and R matrices used in solving the 

optimization problem generally gave better results 

though the Q and R matrices affected different parts 

of the response. 

   As shown in Figures 12 and 14, increasing the 

controller gains through the Q matrix increased the 

speed of the response. This was expected as the Q 

matrix weighs the relative cost of errors in the states 

of the system [31, 34]. Since increasing Q means that 

the errors are now very important, the optimization 

problem adapts to these constraints and tries to bring 

the errors to a minimum as fast as possible giving rise 

to faster settling times and rise times. In other words, 

the Q matrix determined how fast the system gets to 

the steady state. The R matrix on the other hand 

weighs the relative importance of the control effort 

on the cost optimization problem. As shown in Figure 

16, increasing the coefficient of the R matrix that 

corresponds to the yaw (r) response eliminated the 

overshoot that was present in the response. The R 

matrix can then be seen as affecting the 

characteristics of the transient response at a penalty 

of increasing the settling and rise time as can be seen 

in the transition from Figure 14 to Figure 16 keeping 

the Q matrix constant and varying the R matrix. 

Depending on the limitations imposed by the physical 

system, which will vary from one vessel to the other, 

it is very possible to select the Q and R matrices to 

satisfy the needs of that particular application. 

   However, there will always be some form of 

steady-state error in the system (because of the 

absence of integrators) and this is the main setback of 

the design. In cases where the minimal steady-state 

error is not considered drastic (the errors are of a 10-2 

order of magnitude for step inputs), the design gives 

a satisfactory response. If on the other hand, it is 

required that there should be no steady-state error 

whatsoever then integral action must be incorporated 

into the design to eliminate the error. This is at a cost 

of extra complexity in the system. For this design, 

however, the performance is very adequate. 

   For the response plots presented in Figures 18 and 

20 which are for ramp and sinusoidal inputs 

respectively, the effect of the steady state errors 

becomes more noticeable. A ramp response can be 

used to simulate a steady change in the control 

forces. Sinusoidal inputs are usually not used in 

manoeuvring though they are sometimes used in full-

scale testing of ships [26]. Again as stated in the 

preceding paragraphs, the error is relatively small. 

The states in the model are velocities and hence when 

a time series of the motion is obtained as shown in 

Figure 24, the vessel still performs in the expected 

manner i.e. turns a full circle [26, 31]. Due to the 

errors, however, it is possible that the vessel's turning 

radius or time varies from the actual one. 

Unfortunately, the amount of this deviation cannot be 

verified due to a lack of actual testing data for the 

vessel. For the simulation carried out on the model, 

the vessel has a turning radius of about 300m and 

completes a full turn in 3.5 minutes. 

 

5. Conclusions 

 

   The work develops a Linear Quadratic Regulator 

based control system for stabilizing an unstable 

vessel model and tracking reference inputs with 

satisfactory performance. The control system has 

been tested with different values of its gains 

calculated for varying values of the Q and R matrices 

that are used in finding a steady-state solution to the 

matrix algebraic Riccati equation. The solution of 

this equation gives the feedback gain K of the Linear 

Quadratic Regulator problem. It was found that by 

choosing appropriate values for Q and R a finely 

tuned response can be obtained with no overshoots 

and a reasonable speed. This result is significant as it 

enables naval architects to design unstable hull forms 

which are generally easier to manoeuvre as long as 

their response can be guaranteed in a predictable way 

which is the effect of this controller design. Although 

Linear Quadratic Trackers have been used in ship 

control system design before, this design proceeds 

using an unstable vessel model as the starting point. 

The instability in the vessel model in this case is due 

to the limitations of the linear model. The linear 

model however is useful as the hydrodynamic 

parameters it is based on can be evaluated early on in 

the design. It is even possible to estimate them from 

statistical regression analysis based on the principal 

dimensions of the vessel such as those provided in 

Papoulias [26]. Thus, it allows designers to obtain 

some indication of how the vessel will perform and 

make necessary adjustments early on in the design. 

The work also proves the capability of the LQR 

design as a robust model capable of stabilizing an 

unstable system and giving it satisfactory step 

performance specifications. 

   The controller design presented here will usually 

form the core of either a dynamic positioning system 

or a ship autopilot system and will have to be 

combined with a control allocation algorithm to form 

a complete controller. The control allocation 

algorithm transforms the control signals from the 
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controller into physical actions performed by the 

control elements e.g. rudder, fins, etc.  

   To eliminate the effect of noise in the state 

measurements and errors due to environmental 

effects like winds etc, there will also be a need to 

incorporate a Kalman filter to find estimates of the 

system states and input these into the controller. This 

arrangement is usually referred to as a Linear 

Quadratic Gaussian (LQG) design. The combination 

of these three elements i.e. the Linear Quadratic 

Regulator/Tracker, the Kalman Filter, and the control 

allocation algorithm can then be implemented as a 

dynamic positioning system. For an autopilot, a 

means of incorporating Global Positioning System 

(GPS) measurements and probably weather 

forecasting data into the system will also be required. 
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Appendix 1 

SIMULINK block diagram of the time series generator. 

 
v_mariner.m: MATLAB script to generate state space model 
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Appendix 2 
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Appendix 3 

vessel_response_lqr3.m: MATLAB script for creating SIMULINK optimal controller variables. 
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